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Preface

My master thesis advisor, Prof. Erdoğan ESİN is dead May 16, 2022. In our department, we
organized an international geometry symposium on the Zoom application on February 9-10, 2023
in his memory.

Unfortunately, an earthquake with a magnitude of 7.7 occurred at 04:17 on February 6, 2023, in the
Pazarcık district of Kahramanmaraş in our country three days before the symposium. . Earthquake;
It was felt intensely in the surrounding provinces, especially in Kahramanmaraş, Hatay, Osmaniye,
Adıyaman, Gaziantep, Şanlıurfa, Diyarbakır, Malatya and Adana. I wish God’s mercy on our
citizens who died in the earthquake and wish a speedy recovery to the injured people. Our pain as
a country is great.

Despite all our angles, we held the symposium on 9-10 February 2023. Geometryists who attended
the symposium from abroad and from home shared our pain and expressed their condolences. I
would like to thank all the participants who supported us by attending the symposium.

Our symposium invited speaker is Prof. Ryszard DESZCZ wanted to talk at the symposium about
his student Şahnur YAPRAK, for whom he was the second advisor for her doctoral thesis. So, we
also included Assoc. Dr. Şahnur YAPRAK’s life in the symposium. We lost her in a tragic traffic
accident on the way back from the symposium in June 1996.

Since the online publication of the symposium proceedings book of the papers presented at the
symposium coincides with the 2nd century of the Republic of Türkiye, I commemorate with respect
and gratitude all our Martyrs and Veterans who fought in the War of Independence, especially
Mustafa Kemal ATATÜRK.

I would like to thank Lecturer Dr. Anıl ALTINKAYA, who contributed to the preparation of the
symposium proceedings book.

The Symposium Organizing Committee would like to thank very much to our Dean Prof. Suat
KIYAK and our Rector Prof. Musa YILDIZ for their support at the symposium.

I hope it will be useful to the world of geometry.

Prof. Aysel TURGUT VANLI

Chairperson of the Symposium Organizing Committee
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Erdoğan ESİN’s Life 6

Elisabetta BARLETTA, Sorin DRAGOMIR and Francesco ESPOSITO
Cauchy-Riemann Geometry 16

Ryszard DESZCZ and Małgorzata GLOGOGOWSKA
On Some Generalized Einstein Metric Conditions 31

Adela MIHAI, Marilena JIANU and Leonard DAUS
Surfaces Associated with Pascal and Catalan Triangles 54

Sema SALUR
Geometric Structures on G2 Manifolds and Harvey Lawson Submanifolds 65

Chris WOOD
Higher-power harmonicity 77

Aysel TURGUT VANLI
Ricci Solitons with Concircular and Conformal Killing Potential Vector Fields in Complex
Sasakian Manifolds 91

Yusuf YAYLI and Mert ÇARBOĞA
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Dear Rector

Dear Dean

Distinguished invited speakers and dear participants

I greet you with respect.

Unfortunately, an earthquake with a magnitude of 7.7 occurred at 04:17 on February 6, 2023, in
the Pazarcık district of Kahramanmaraş in our country.

Earthquake; It was felt intensely in the surrounding provinces, especially in Kahramanmaraş,
Hatay, Osmaniye, Adıyaman, Gaziantep, Şanlıurfa, Diyarbakır, Malatya and Adana. I wish God’s
mercy on our citizens who died in the earthquake and wish a speedy recovery to the injured
people. Our pain as a country is great.

Thank you very much for your support with your participation in the symposium.

You gave honored us.

The symposium will last for two days. In the symposium,10 (ten) geometers from 9 (nine)
different countries will make presentations as valuable invited speakers. In addition, there will be
6 (six) sessions in the symposium program and a total of 30 ( thirty) presentations will be made.
96 people will participate in the symposium. I believe that the symposium will be beneficial to the
scientific world. We organized a symposium in memory of Prof. Erdoğan ESİN.

I want to share my feelings about him. He was my master’s thesis advisor. My master’s thesis
position was determined by my teacher as tangent bundles. I am grateful to my teacher for helping
me with my thesis. That’s why I am very honored to organize this symposium in memory of
Erdoğan ESİN.

He was an idealist scientist who was very meticulous in his scientific studies, examining and
questioning everything down to the last detail. Due to the excessive rigor of scientific studies, he
published few articles.
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However, besides an idealistic humanity, he teaches very well and has very good lecture notes. He
used to think of printing these lecture notes as a book, but he couldn’t do it.

While our teacher was lecturing, he used to convey his experiences about life beyond mathematics
to the students. For this reason, we learned about life in the lessons.

He was a brilliant person. He loved scientific discussions and presented them to academics from
different perspectives.

Professor Erdoğan ESİN has given mathematics lessons to thousands of students. He brought
7 scientists to the world of geometry by having 7 master’s and 5 doctoral theses in his annual
academic life.

We commemorate our teacher and we give our condolences again to his grieving family.

God bless his soul.

I wish you a good symposium.

Kind regards

Organizing Committee Chairperson
Prof. Aysel TURGUT VANLI
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Dear Rector

Dear Dean

Dear guests and invited speakers

I greet you with respect.

Welcome to International Geometry Symposium in Memory of Prof. Erdogan ESİN.

Professor Erdoğan ESİN has worked in our department for 30 years and made a great contribution
to the development of our department. He contributed to educational, academical and research
activities by raising both undergraduate and graduate students in various universities around
Türkiye. My condolences to the grieving family of our valuable professor. May his soul rest in
peace.

Also, due to the earthquake disaster that happened on 6th of February, we are in mourning and we
wish for the best for all earthquake victims who got hurt or affected in any way.

I hope the symposium to be successful and efficient and I present my thanks to everyone involved
in making the symposium a reality including our rectorship, faculty of science dean’s office and
the organising committee of our department.

Sincerely

Head of Department of Mathematics
Prof. A. Duran TÜRKOĞLU
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Dear Rector

Dear invited speakers and participants

Warm greetings from Türkiye

Sir, I wish God’s mercy to our citizens who lost their lives in the earthquake that took place in
our country on February 6, 2023. Unfortunately, we have thousands of wounded. I wish them a
speedy recovery as well.

Gazi University is a research university and is also one of the largest universities in Türkiye.
The mission of research universities is to conduct pioneering studies in the field of fundamental
sciences. Gazi University Department of Mathematics is at the forefront of scientific studies in our
country. Hence, it has been making significant contributions both within the country and globally
that highlight our university’s mission of research. Today, I am sharing the excitement of holding
the first international geometry symposium by the mathematics department of our faculty. Thank
you for participating in the symposium. This symposium will be the initial step in the opening of
the Geometry Department abroad. I believe that the symposium will bring great value to geometry
with the participant scientists from all over the world.In the honor of Prof. Erdoğan ESİN , I
would like to share brief introductory information about.

Prof. Erdoğan ESİN had been in our mathematics department for 30 years that also served in
administration of our faculty.

Vice-chairman of the department from 1997 to 2000, Head of the mathematics department from
2000 to 2003, and served as a member of the faculty board between 1992-1993.

He teached in the mathematics department for many years. Today, there are two lecturers and two
research assistants in the Geometry Department. Our two professors working in the Geometry
Department are students of Prof. Erdoğan ESİN. For this reason, we dedicated the symposium
held today to the memory of our teacher.

I wish God’s blessings on our teacher and thank him for his contribution to our faculty.
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I believe that the symposium will be successful.

I would like to thank Prof. Aysel TURGUT VANLI Chairman of the Organizing Committee, and
all the other organizers who contributed to this nice organization.

I respectfully greet the participants.

Prof. Suat KIYAK
Dean of Faculty of Science
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Erdoğan ESİN’s Life
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CAUCHY-RIEMANN GEOMETRY

Elisabetta BARLETTA1, Sorin DRAGOMİR2 and Francesco ESPOSITO3

1degli Studi della Basilicata, Dipartimento di Matematica, Informatica ed Economia, Potenza, Italy, e-mail:

elisabetta.barletta@unibas.it
2degli Studi della Basilicata, Scuola di Ingegneria, Potenza, Italy, e-mail: sorin.dragomir@unibas.it

3degli Studi della Basilicata, Dipartimento di Matematica, Informatica ed Economia, e-mail: f.esposito@unibas.it

ABSTRACT

The ordinary Cauchy-Riemann system ∂f = 0 on Cn (n ≥ 2) induces on every real
hypersurface M ⊂ Cn the tangential Cauchy-Riemann equations

∂Mu = 0 (1)

(a first order overdetermined PDE system, with variable C∞ coefficients) and every
C1 solution u :M → C to (1) is a CR function on M . A CR structure is a recast of
(1) as an involutive complex distribution T1,0(M) ⊂ T (M) ⊗ C, of complex rank
n− 1, and the restriction to M of a holomorphic function (on a neighborhood Ω ⊃
M ) is a solution to (1). The CR extension problem is whether a point x0 ∈M admits
a neighborhood Ω ⊂ Cn such that the restriction morphism O(Ω) → CR1(U) is
an epimorphism (with U = Ω ∩M ). Given an abstract CR structure T1,0(M) on
a real (2n − 1)-dimensional manifold (not necessarily embedded into Cn) the CR
embedding problem is whether a point x0 ∈M admits a neighborhood U ⊂M and
a CR immersion Ψ : U → Cn [so that the portion of T1,0(M) over U is actually
induced by the complex structure of the ambient space Cn]. We review results (old
and new) on the two fundamental problems mentioned above, with an emphasis on
the differential geometric objects needed in their study (cf. [3] and [1]), and indicate
their relationship to mathematical physics (cf. [7], [8], [5], and [6]).

Keywords Tangential CR equations · CR function · Tanaka-Webster connection ·
sublaplacian · Fefferman metric · Robinson-Trautman construction

1. CR structures, the way they occur

Let M be a real (2n + k)-dimensional C∞ manifold, with n ≥ 1 and k ≥ 1. Definition 1.1 A
complex subbundle H ⊂ T (M) ⊗ C, of the complexified tangent bundle, of complex rank n, is
called an almost CR structure if

Hx ∩Hx = {0}, x ∈M. (2)
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The integer n is the CR dimension, while k is the CR codimension. The pair (n, k) is the type of
the given almost CR structure. An almost CR structure H is formally integrable if for every open
set U ⊂M

Z, W ∈ C∞(U, H) =⇒
[
Z, W

]
∈ C∞(U, H). (3)

A CR structure is a formally integrable almost CR structure. A pair (M, H) consisting of a mani-
fold M and an (almost) CR structure H is an (almost) CR manifold. Let (M, H) be an almost CR
manifold, of type (n, k). Let us consider the first order differential operator

∂M : C1
(
M, C

)
→ C

(
H ∗)

,(
∂Mu

)
Z = Z(u), u ∈ C1(M,C), Z ∈ C∞(H).

Definition 1.2 ∂M is the tangential Cauchy-Riemann operator and

∂Mu = 0 (4)

are the tangential C-R equations. A C1 solution u to (4) is a CR function. Let us look at a few
examples of (almost) CR structures.

1.1 Real hypersurfaces in Cn+1

Let M ⊂ Cn+1 be a real hypersurface, and let us set

T1,0(M)x :=
[
Tx(M)⊗R C

]
∩ T ′(Cn+1

)
x
, x ∈M,

where T ′(Cn+1) is the holomorphic tangent bundle over Cn+1. Then T1,0(M) is a CR structure
on M , of type (n, 1). In particular, if M is given by a defining function ρ ∈ C∞(Ω, R), with
Ω ⊂ Cn+1 open, i.e.

M = {x ∈ Ω : ρ(x) = 0}, Dρ(x) ̸= 0, x ∈M,

then the tangential C-R equations on M are

Lαu = 0, 1 ≤ α ≤ n,

Lα ≡ ajα
∂

∂zj
, ajα

∂ρ

∂zj
= 0.

Let
Ωn+1 =

{
(z, ζ) ∈ Cn × C :

1

2i

(
ζ − ζ

)
> |z|2

}
,

z =
(
z1 , · · · , zn

)
, |z|2 = δαβ z

α zβ ,

be the Siegel domain, or generalized upper half plane. Its boundary ∂Ωn+1 is a real hypersurface
in Cn+1, and hence carries the induced CR structure

T1,0
(
∂Ωn+1

)
⊂ T

(
∂Ωn+1

)
⊗ Cn+1.

T1,0
(
∂Ωn+1

)
is the span of {Lα : 1 ≤ α ≤ n} where

Lα ≡ ∂

∂zα
+ 2 i zα

∂

∂ζ
,

hence the tangential C-R equations (on the boundary of the Siegel domain) are

∂u

∂zα
− 2 i zα

∂u

∂ζ
= 0, 1 ≤ α ≤ n.
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This is precisely the context in which the tangential C-R equations were discovered by H. Lewy1,
though confined to the case n = 1 i.e. on the boundary of the Siegel domain Ω2 ⊂ C2. H. Lewy
started with the Dirichlet problem for the (ordinary) Cauchy-Riemann equations on the Siegel
domain

∂F

∂z
= 0,

∂F

∂ζ
= 0 in Ω2 , (5)

F = u on ∂Ω2 , (6)

with the boundary datum u ∈ C∞(∂Ω2 , C
)
, and posed the problem of the existence of a solution

F ∈ O
(
Ω2

)
∩ C∞(Ω2

)
[to (5)-(6)] i.e. F is holomorphic in Ω2 and C∞ up to the boundary. It is

an elementary matter that a necessary condition for such a solution F to exist, is that its boundary
values u satisfies the tangential C-R equations on ∂Ω2.

Let Hn = Cn × R be the Heisenberg group i.e. the non commutative Lie group R2n+1 ≈ Cn × R
with the group law

(z, t) · (w, s) =
(
z + w, t+ s+ 2 Im(z · w)

)
, z · w =

n∑
α=1

zαwα .

Let us consider the (left invariant) complex vector fields

Lα ≡ ∂

∂zα
+ i zα

∂

∂t
, 1 ≤ α ≤ n,

and let H be the span of the Lα’s. Then H is a CR structure, of type (n, 1), on Hn, and the map

ϕ : Hn → ∂Ωn+1 ,

ϕ(z, t) =
(
z, t− i |z|2

)
, z ∈ Cn , t ∈ R,

is a CR isomorphism i.e. a C∞ diffeomorphism preserving the CR structures

(dxϕ)Hx ⊂ T1,0
(
∂Ωn+1

)
ϕ(x)

, x ∈ Hn .

When n = 1 the differential operator

L1 ≡
∂

∂z
− i z

∂

∂t
∈ C∞(T (Hn)⊗ C

)
is the Lewy operator.

The Lewy operator is known2 to be unsolvable i.e. there exist functions f ∈ C∞(Hn

)
such

that the equation L1u = f possesses no C∞ solution u. The unsolvability of the Lewy operator
relates Cauchy-Riemann analysis to an important chapter3 of the theory of PDEs, and prompted
the development of the latter. We shall come back again on the significance of the unsolvability
property of L1, as related to the CR embeddability problem.

1.2 Orbit spaces of null Killing vector fields
1Cf. H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related

theorem for regular functions of two complex variables, Ann. Math., 64(1956), 514-522.
2Cf. H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66(1957), 155-158.
3Cf. L. Hörmander, Differential equations without solutions, Mathematische Annalen, 140(1960), 169-173. Cf. also V.V.

Grusin, A certain example of a differential equation without solutions, Math. Notes, 10(1971), 499-501.
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Let M be a real (2n + 2)-dimensional C∞ manifold, equipped with the Lorentzian metric g, and
letN ∈ X(M) be a null [i.e. g(N, N) = 0, Nx ̸= 0 for any x ∈ M] Killing (i.e. LNg = 0) tangent
vector field. Let W and C be the Weyl and Cotton tensor fields i.e.

Wijkℓ = Rijkℓ − Ljk giℓ − Liℓ gjk + Ljℓ gik + Lik gjℓ ,

Cjkℓ = ∇ℓLjk −∇kLjℓ ,

where
Ljk =

1

2n

{
Rjk −

R

2(2n+ 1)
gjk

}
,

and let us assume that
N ⌋W = 0, N ⌋C = 0.

Next, let us consider the differential 1-forms and tangent vector field

θ, σ ∈ Ω1(M), V ∈ X(M),

θ(X) = g(X, N), σ(X) = L(X, N), g(V, X) = σ(X).

Also, let us consider the field of endomorphisms

J : T (M) → T (M), JX = ∇XN.

Then (J, N, V, θ, σ) is an f -structure on M, with two complmented frames, in the sense of D.E.
Blair et al.4, compatible to the Lorentzian metric g i.e.

g(JX, JY ) = g(X, Y )− θ(X)σ(Y )− σ(X) θ(Y ).

If H = Ker(θ) ∩ Ker(σ) then J descends to a complex structure J : H → H and Spec
(
JC
)
=

{±i}. The eigenbundle
H1,0 = Eigen

(
JC ; +i

)
⊂ T (M)⊗ C

is an almost CR structure of type (n, 2) on M, which in general isn’t formally integrable5. Let
M = M/N be the orbit space, consisting of the maximal integral curves of N , and let us assume
that M is a C∞ manifold6. Let F be the foliation of M by orbits of N , so that M = M/N is
the leaf space [of the foliated manifold (M, F)]. Then θ is a basic 1-form7 θ ∈ Ω1

B(F) while
the Lorentz metric g, the endomorphism J , and the 1-form σ are invariant under sliding along the
leaves of F . Consequently8 the almost CR structure H1,0 projects (via π : M → M = M/N ) on
a CR structure H on M , of type (n, 1).

1.3 Bejancu’s CR submanifolds
Let M be a submanifold of a Kählerian manifold (M̃, J, g̃), where J and g̃ are respectively the
complex structure and the Kählerian metric on N , and let g = j∗g̃ be the first fundamental form of
the given immersion j :M ↪→ M̃ . Let D be a C∞ distribution on M .

Definition 1.3 The pair (M, D) is said to be a CR submanifold9 of the Kählerian manifold
(M̃, J, g̃) if

4Cf. D.E. Blair & G.D. Ludden & K. Yano, Differential Geometric Structures on principal toroidal bundles, Trans. Amer.
Math. Soc., 181(1973), 175-184.

5The precise integrability conditions for H1,0 were not studied.
6This is the case, for instance, when N is regular in the sense of R. Palais, A global formulation of the Lie theory of transforma-

tion groups, Memoirs of Amer. Math. Soc., No. 22, 1957.
7That is θ(N) = 0 and N ⌋ dθ = 0.
8By a result of C.R. Graham, On Sparling’s characterization of Fefferman metrics, American J. Math., 109(1987), 853-874.
9CR submanifolds were introduced by A. Bejancu, CR submanifolds of a Kähler manifold, I-II, Proc. Amer. Math. Soc.,

69(1978), 134-142; Trans. Amer. Math. Soc., 250(1979), 335-345.
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i) D is J-invariant i.e. Jx
(
Dx

)
⊂ Dx, x ∈M ,

ii) The orthogonal complement D⊥ of D in
(
T (M), g

)
is J-anti-invariant i.e. Jx

(
D⊥

x

)
⊂ E(j)x,

x ∈ M , where E(j) → M is the normal bundle of the given immersion j. Let (M, D) be
a CR submanifold of the Kählerian manifold (M̃, J, g̃). The complex structure of the ambient
space descends to a complex structure JM : D → D. By a result of D.E. Blair & B-Y. Chen10 the
eigenbundle

H = Eigen
(
JC
M ; +i

)
⊂ T (M)⊗ C

is a CR structure on M , so that (M, H) is a CR manifold of type (n, k), where

dimR Dx = 2n, dimR D⊥
x = k, x ∈M.

A program devoted to recovering results in complex analysis, from real hypersurfaces M ⊂ Cn+1

to CR submanifolds of a Hermitian manifold M̃ (perhaps with the ambient space M̃ a Kählerian,
or a locally conformal Kähler, manifold) was started by E. Barletta & S. Dragomir11.

1.4. Contact Riemannian manifolds
Let M be a real (2n + 1)-dimensional C∞ manifold. The almost contact structure12 (φ, ξ, η)
underlying an almost contact metric structure (φ, ξ, η, g) on M is normal if[

φ , φ
]
+ 2(dη)⊗ ξ = 0 (7)

[and normality may be geometrically interpreted as the integrability condition for the almost
complex structure on M × R, naturally associated to (φ, ξ, η)]. Let us consider the 2-form
Φ(X, Y ) = g(X, φY ). The contact condition is

dη = Φ. (8)

A contact metric structure is an almost contact metric structure obeying to the contact condition
(8) [and (M, (φ, ξ, η, g) is a contact Riemannian manifold].

Let (φ, ξ, η) be an almost contact structure on M . The restriction J of the endomoprhism φ to
Ker(η) is a complex structure along Ker(η) and hence

H = Eigen
(
JC ; +i

)
⊂ Ker(η)⊗ C

is an almost CR structure on M , of type (n, 1). As observed long ago by S. Ianuş13 normality (7)
is a sufficient condition for the integrability of H. The converse is however false in general. The
integrability of H on a contact Riemannian manifold was characterized14 by the condition Q = 0
where Q is the Tanno tensor field15.

We take the occasion to break a lance in favor of the study of the CR geometry of contact Rieman-
nian manifolds with Q ̸= 0 i.e. in the absence of integrability.

10Cf. D.E. Blair & B-Y. Chen, On CR submanifolds of Hermitian manifolds, Israel J. Math., 34(1979), 353-363.
11Cf. E. Barletta & S. Dragomir, CR submanifolds of Hermitian manifolds and the tangential CR equations, in Geometry of

Cauchy-Riemann submanifolds, 91-122, Springer, Singapore, 2016.
12In the sense of D.E. Blair, Contact manifolds in Riemannian geometry, vol. 509, Springer-Verlag, Berlin-Heidelberg-New

York, 1976.
13Cf. S. Ianuş, Sulle varietà di Cauchy-Riemann, Rend. dell’Accad. Sci. Fis. Mat., Napoli, 39(1972), 191-195.
14Cf. E. Barletta & S. Dragomir, Differential equations on contact Riemannian manifolds, Annali della Scuola Normale Superiore

di Pisa, Cl. Sci., Ser. IV, (1)XXX(2001), 63-96.
15Cf. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., (1)314(1989), 349-379.
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Of course, as H is only an almost CR structure, S.M. Webster’s theory16 doesn’t apply (and basic
tools in pseudohermitian geometry, such as the Tanaka-Webster connection, the Fefferman metric,
the sublaplacian, aren’t a priori defined). Nevertheless, as shown by S. Tanno17 the wealth of
additional geometric structure on a given contact Riemannian manifold exhibits strong formal
similarities to the geometric structure of a strictly pseudoconvex CR manifold (endowed with a
positively oriented contact form) and compensates for the lack of integrability of H, to the point
that an analog to the Tanaka-Webster connection (the Tanno connection), and of the sublaplacian
(Tanno’s second order degenerate elliptic operator ∆H), can be built. For instance

∆Hf ≡ ∆f − ξ
(
ξ(f)

)
,

∆f ≡ 1
√
g

∂

∂xi

(√
g gij

∂f

∂xj

)
, f ∈ C2(M),

[∆ is the Laplace-Beltrami operator of the Riemannian manifold (M, g)].

As a result, considerations very much like Webster’s hold on a contact Riemannian manifold, sort
of in the presence of the "ghost" of pseudohermitian geometry. Tanno’s pioneering study was
carried further by E. Barletta & S. Dragomir18, who proved the subellipticity (of order ϵ = 1/2) of
Tanno’s sublaplacian ∆H i.e. ∆H is formally self-adjoint and19

∀ x ∈M, ∃ U ⊂M open, x ∈ U, ∃ C > 0,

∀ f ∈ C∞
0 (U) : ∥f∥2ϵ ≤ C

{∣∣(∆Hf , f
)
L2

∣∣+ ∥∥f∥∥2
L2

}
with ϵ = 1/2, and built a contact Riemannian analog to the Fefferman metric. The same program
was further pursued by D.E. Blair & S. Dragomir20. A problem left open there21 (that is whether
the scalar curvature of the contact Riemannian analog to the Fefferman metric projects on Tanno’s
scalar curvature) was recently solved by Masayoshi Nagase22. A contact Riemannian analog to the
Folland-Stein normal coordinates23 was devised by S. Dragomir & D. Perrone24. A Bochner-type
formula leading to an estimate by below of the first nonzero eigenvalue of Tanno’s sublaplacian
∆H (a contact Riemannian analog to the Lichnerowicz-Obata theorem in Riemannian geometry)
was obtained by Feifan Wu & Wei Wang25. It should be mentioned that the result by F. Wu & W.
Wang26 is legitimated by the subellipticity of ∆H (as previously established by E. Barletta & S.
Dragomir27). Indeed, by a result of A. Menikoff & J. Sjöstrand28 if M is compact then −∆H has a

16S.M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry, 13(1978), 25-41.
17Cf. op. cit.
18Cf. op. cit.
19Here ∥ · ∥ϵ is the Sobolev norm of order ϵ i.e. ∥u∥2ϵ =

∫ (
1 + |ξ|2

)ϵ ∣∣û∣∣2dξ where û is the Fourier transform of u.
20Cf. D.E. Blair & S. Dragomir, Pseudohermitian geometry on contact Riemannian manifolds, Rendiconti di Matematica, Serie

VII, Volume 22, Roma (2002), 275-341.
21Cf. op. cit.
22Cf. M. Nagase, On the curvature of the Fefferman metric of contact Riemannian manifolds, Tohoku Math. J., 71(2019),

425-436.
23Playing a major role in the (partial) solution to the CR Yamabe problem, cf. D. Jerison & J.M. Lee, The Yamabe problem on

CR manifolds, J. Diff. Geometry, 25(1987), 167-197; CR normal coordinates and the Yamabe problem, ibidem, 29(1989), 303-344.
24Cf. S. Dragomir & D. Perrone, Levi Harmonic Maps of Contact Riemannian Manifolds, Journal of Geometric Analysis,

(3)24(2014)
25Cf. F. Wu & W. Wang, The Bochner-type formula and the first eigenvalue of the sub-Laplacian on a contact Riemannian

manifold, Differential Geometry and its Applications, 37(2014), 66-88.
26Cf. op. cit.
27Cf. op. cit.
28Cf. A. Menikoff & J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann., 235(1978), 55-58.
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discrete spectrum
0 < λ1 < · · · < λν < · · · ↑ +∞ .

The same Authors29 solved the (contact Riemannian analog to the) CR Yamabe problem. As well
as in their previous work on the Lichnerowicz-Obata theorem, W. Wang & F. Wu focus30 on the
differential geometric part of the problem31.

Among the open problems in almost CR geometry on a contact Riemannian manifold that in the
opinion of the present lecturer, ought to be addressed, is building a (contact Riemannian analog to)
Kohn-Hodge-de Rham theory for the tangential Cauchy-Riemann twisted32 complex

C∞(M)⊗ C ∂M−→ Ω0,1(M)
∂M−→ · · · ∂M−→ Ω0,n(M) → 0

[∂
2

M ̸= 0 in general] and its twisted cohomology

H0,q

∂M
(M) =

Ker
{
∂M : Ω0,q(M) → •

}[
∂M Ω0, q−1(M)

]
∩Ker

{
∂M : Ω0,q(M) → •

} .
The problem posed will require recovering J.J. Kohn’s subelliptic estimates33 on a contact Rieman-
nian manifold.

2. E.E. Levi convexity

2.1 Levi form
Let (M2n+k , H) be a CR manifold, of type (n, k). Let

πx : Hx → Tx(M)⊗R C
Hx ⊕Hx

, x ∈M,

be the projection. The Levi form is

Lx : Hx → Tx(M)⊗R C
Hx ⊕Hx

, Lx(w) = − i

2
πx
[
L, L

]
x
,

x ∈M, w ∈ Hx , L ∈ C∞(H), Lx = w.

The Levi form is due to E.E. Levi, though confined to (smooth) boundaries of domains Ω ⊂ C2.

29Cf. W. Wang & F. Wu, On the Yamabe problem on contact Riemannian manifolds, Annals of Global Analysis and Geometry,
56(2019), 465-506.

30Cf. op. cit.
31And not enough room is devoted to the mathematical analysis part of the same problem. This situation is aggravated by the

already incomplete treatment by D. Jerison & J.M. Lee, The Yamabe problem on CR manifolds, J. Diff. Geometry, 25(1987),
167-197; Intrinsic CR normal coordinates and the CR Yamabe problem J. Diff. Geometry, 29(1989), 303-343. Of course the gaps
in D. Jerison & J.M. Lee’s work should be filled in, prior to any attempt to extend their arguments to the non-integrable almost CR
structures appearing on contact Riemannian manifolds.

32In the sense of I. Vaisman, New examples of twisted cohomologies, Boll. Un. Mat. Ital., (7)7(1993), no. 2, 355-368.
33Cf. J.J. Kohn, op. cit.
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Eugenio Elia Levi (1883-1917)

E.E. Levi was born on the 18th of October 1893 in Turin and died in war, shot in the head, at a location near Cormons (Gorizia) on

the 28th of October 1917. His death was surely the greatest loss suffered34 by the Italian mathematics - and not only - due to the

1914-1918 war. L. completed his university studies at Scuola Normale Superiore of Pisa in 1904 and served there as an assistant

of Ulisse Dini. In 1909 L. became a professor of infinitesimal analysis at the University of Genova where he remained until he was

called for the military service and the successive all too early ending. As F. Tricomi wrote, despite of his premature death (when

only 34) L. may be considered (on the basis of the about thirty works he wrote) one of the major Italian mathematicians of the

twentieth century. Remarkable are L.’s works on second order elliptic partial differential equations (1907-1908) and also his works

on the heat equation and on arguments of variational calculus. L. also has contributions in differential geometry and group theory.

L. was a correspondent member of Accademia Nazionale dei Lincei (nominated in 1911).

In more generality, if (M2n+1 , H) is a CR manifold of type (n, 1), then let

H(M) = Re
{
H⊕H}

be the Levi distribution, carrying the complex structure

J : H(M) → H(M), J(Z + Z) = i (Z − Z), Z ∈ H,
and let H(M)⊥ ⊂ T ∗(M) be the conormal bundle i.e. the real line bundle

H(M)⊥x =
{
ω ∈ T ∗

x (M) : Ker(ω) ⊃ H(M)x}, x ∈M.

If M is connected and orientable35 the conormal bundle is trivial i.e.

H(M)⊥ ≈M × R
(a vector bundle isomorphism) so that H(M)⊥ admits globally defined, nowhere zero, C∞ cross
sections θ ∈ C∞(H(M)⊥

)
, each of which is commonly referred to as a pseudohermitian structure

on M . A pseudohermitian structure is then a differential 1-form θ ∈ Ω1(M) such that Ker(θ) =
H(M). Let P(M,H) be the space of all pseudohermitian structures onM . For every θ ∈ P(M,H)
we consider the field of bilinear forms

Gθ(X, Y ) = (dθ)(X, JY ), X, Y ∈ H(M).

As a consequence of formal integrability Gθ(JX, JY ) = Gθ(X, Y ). The CR structure H is
nondegenerate if Gθ is nondegenerate for some θ ∈ P(M, H) (and thus for all). Also H is strictly
pseudoconvex if Gθ is positive definite, for some θ ∈ P(M,H). When H is strictly pseudoconvex,
one denotes by P+(M,H) the set of all positively oriented contact forms θ i.e. such that Gθ is
positive definite. Next

Φx :
Tx(M)⊗R C
Hx ⊕Hx

→ H(M)⊥x ,

34The biographical notes on L. are based on material by G. Loria and G. Fubini [Boll. Bibl. Storia Mat., (2)1(1918), 38-45] and
by C.S. Roero, http://www.torinoscienza.it/accademia/personaggi.

35A fact that we assume tacitly to begin with.
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Φx

(
πx(w)

)
:= θx(w) θx , w ∈ Tx(M)⊗R C, x ∈M,

is a vector bundle isomorphism

Φ :
T (M)⊗ C
H⊕H

≈ H(M)⊥

and36

Φx Lx(w) = Gθ, x(w, w)

for any w ∈ Hx. One then legitimately refers to Gθ, or its C-linear extension to H(M)⊗C, as the
Levi form.

If Ω = {ρ > 0} ⊂ C2 is a domain with smooth boundary M = ∂Ω = {ρ = 0}, the Levi invariant
of M is

L(ρ) := 2Gθ(L, L) =
2∑

j, k=1

∂2ρ

∂zj ∂zk
λj λk , λ1 =

∂ρ

∂z2
, λ2 = − ∂ρ

∂z1
,

θ = j∗
{ i
2

(
∂ − ∂

)
ρ
}
, j∗L = − ∂ρ

∂z2

∂

∂z1
+
∂ρ

∂z1

∂

∂z2
, j :M ↪→ C2 .

This is precisely how E.E. Levi introduced37 the Levi form. We end this section by presenting
a simple result due to L. Amoroso38 demonstrating the Levi form at work i.e. illustrating the
influence of the properties of the Levi form of the boundary of a domain Ω ⊂ C2 on the analysis
of pluriharmonic functions in Ω.

A C2 function u : Ω → R is pluriharmonic if ∂∂u = 0 in Ω.

The real part u = 1
2

(
f + f

)
of a function f , which is holomorphic in Ω, is pluriharmonic. If Ω

is simply connected the converse is true i.e. any pluriharmonic function is the real part of some
function holomorphic in Ω. Here we deal with the classical problem to find necessary and sufficient
conditions on a function u defined on the boundary of Ω such that u is the boundary values of a
pluriharmonic function.

A linear partial differential operator P , of order m, whose coefficients are continuous on Ω, is said
to be tangential to ∂Ω if Pu = 0 on ∂Ω for any u ∈ Cm(C2) which satisfies u|∂Ω = 0.

L. Amoroso described39 boundary values of pluriharmonic functions in terms of the Levi invariant.

Theorem 2.1.1 Assume that Ω ⊂ C2 admits a defining function ρ ∈ C2(Ω) such that L(ρ) ̸= 0
everywhere on ∂Ω. Then there is a tangential (relative to ∂Ω) second order linear differential
operator D such that

∂u

∂ν
=

1

L(ρ)
Du, (9)

36Indeed
Φx Lx(w) = − i

2
Φx πx

[
L , L

]
x
= − i

2
θx

([
L , L

]
x

)
θx =

= i (dθ)
(
L, L

)
x
= Gθ

(
L, L

)
x
= Gθ, x(w, w).

37Cf. E.E. Levi, Studi sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Annali di Matem-
atica Pura e Applicata, s. III, XVII, n. 1, 1910, pp. 61-87.

38Cf. L. Amoroso, Sopra un problema al contorno, Rend. Circ. Matem. Palermo, 33(1912), 75-85.
39Cf. op. cit.
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for any u ∈ C2(Ω) which is pluriharmonic in Ω.

Of course the Levi invariant makes sense for every 3-dimensional CR manifold (M, H), equipped
with a pseudohermitian structure θ, and the prescription "Levi invariant ̸= 0" is that H be nonde-
generate.

2.2. Levi flat CR manifolds
A CR manifold (M2n+k, H), of type (n, k), is Levi flat if L = 0. By a result of T. Levi-Civita40

Theorem 2.2.1 Every Levi flat CR manifold (M2n+k, H) of type (n, k) is foliated by complex
n-dimensional manifolds.

The nowadays proof of Theorem is to observe that (M, H) is Levi flat if and only if H(M)
is a completely integrable Pfaffian system, and hence a Levi flat manifold carries a foliation F
by real 2n dimensional submanifolds. On the other hand, the complex structure J : H(M) →
H(M) determines an almost complex structure on every leaf S ∈ M/F , and one may apply the
Newlander-Nirenberg theorem41 to that leaf.

Let (M, H) be a Levi-flat CR manifold of type (n, 1), and let F be the codimension one foliation
ofM tangent toH(M). Then every local defining submersion of F is a real valued CR function on
M . This exhibits a limit to the analogy between holomorphic functions and CR functions, as any
real valued holomorphic function is a constant while the same is true for real valued CR functions
only on a nondegenerate CR manifold.

2.3 Nondegenerate CR manifolds
Let (M, H) be a CR manifold, of type (n, 1). If H is nondegenerate then every pseudohermitian
structure θ ∈ P(M, H) is a contact structure on M i.e. θ ∧ (dθ)n is a volume form. As shown
by S.M. Webster42 every nondegenerate CR manifold (M,H), on which a contact form θ has been
fixed, admits a rich geometric structure e.g. a semi-Riemannian metric gθ given by

gθ = Gθ on H(M)⊗H(M),

gθ(X,T ) = 0, gθ(T, T ) = 1, X ∈ H(M),

T ∈ X(M), θ(T ) = 1, T ⌋ dθ = 0,

[gθ is the Webster metric, and T is the Reeb vector field of (M, θ)] which is Riemannian when H
is strictly pseudoconvex and θ is positively oriented. An adapted linear connection ∇ (the Tanaka-
Webster connection, similar to both the Levi-Civita connection of a Riemannian manifold, and the
Chern connection of a Hermitian manifold), parallelizing the Levi distribution H(M), its complex
structure J , and the Webster metric gθ, may then be built

X ∈ X(M), Y ∈ C∞(H(M)) =⇒ ∇XY ∈ C∞(H(M)),

∇J = 0, ∇gθ = 0,

Tor∇(Z, W ) = 0, Tor∇(Z, W ) = 2i Gθ(Z, W ),

τ ◦ J + J ◦ τ = 0, τ(X) := Tor∇(T, X),

Z, W ∈ H, X ∈ X(M).

40Cf. T. Levi-Civita, Sulle funzioni di due o più variabili complesse, Rend. Acad. Naz. Lincei, 14 (1905), 492-499.
41The Newlander-Nirenberg theorem (on the integrability of almost complex structures) wasn’t known to T. Levi-Civita, at the

time Theorem was published (T. Levi-Civita gave a direct proof to the result).
42Cf. op. cit.

25



International Geometry Symposium in Memory of Prof. Erdogan Esin
(IGSM Erdogan Esin)

Also, if H is strictly pseudoconvex then the total space of the canonical circle bundle S1 →
C(M)

π−→ M carries a natural Lorentzian metric Fθ ∈ Lor
(
C(M)

)
(the Fefferman metric) such

that the projection π : (C(M), Fθ) → (M, gθ) enjoys properties similar to those of a semi-
Riemannian submersion, though having degenerate fibers.

3. CR embeddability problem

Let (M, H) be a CR manifold, of type (n, 1).

Definition 3.1 The local CR embeddability problem is whether, given a point x ∈ M , there is
an open neighborhood x ∈ U ⊂ M and a C∞ immersion ϕ : U → Cn+1 such that ϕ : U →
N := ϕ(U) is a CR isomorphism of the CR manifolds

(
U, HU

)
and

(
N, T1,0(N)

)
. The global CR

embeddability problem is whether a globally defined C∞ immersion ϕ : M → Cn+1 of the sort43

exists. Let x ∈ M and let us assume that the local CR embeddability problem has solution i.e.
there is a C∞ immersion ϕ : U → Cn+1, as in the previous definition. Let {Lα : 1 ≤ α ≤ n} be
a local frame of H, about44 the point x. Then

ϕ∗ Lα ∈ ϕ−1 T1,0(N) ⊂ ϕ−1T ′(Cn+1),

ϕ∗ Lα = Lα

(
ϕj
) ( ∂

∂zj

)ϕ
+ Lα

(
ϕj
) ( ∂

∂zj

)ϕ
,

hence
Lα

(
ϕj
)
= 0 (10)

i.e. ϕj are CR functions on U . So the local CR embeddability problem is to produce enough
functionally independent solutions ϕj to the tangential C-R equations Lαu = 0 [so that to build a
CR immersion ϕ =

(
ϕ1 , · · · , ϕn+1

)
: U → Cn+1]. However, the innocent looking like (local)

CR embeddability problem45 turns out to be quite intricate, and cannot be solved in general, that is
examples of CR manifolds which aren’t locally embeddable do exist, as we shall shortly see.

By a (classical) result of A. Andreotti & C.D. Hill46 any real analytic CR manifold is locally
embeddable. In theC∞ category the CR embedding problem was largely solved by M. Kuranishi47,
who showed that every strictly pseudoconvex CR manifold of real dimension 2n+1 ≥ 9 is locally
embeddable in Cn+1. T. Akahori settled48 the question in dimension 7.

3.1. Nirenberg’s non embeddable example
Let H1 = C × R be the 3-dimensional Heisenberg group, with the CR structure spanned by
L ≡ ∂/∂z + i z ∂/∂t. L. Nirenberg built49 a function φ ∈ C∞(H1

)
such that the CR structure

spanned by L+ φ∂/∂t isn’t embeddable in any neighborhood of the origin in H1. The proof is to
show that no pair of CR functions {u1 , u2} defined in a neighborhood U ⊂ H1 are functionally

43That is, such that ϕ : M → N := ϕ(M) is a CR isomorphism.
44Perhaps defined on some smaller open neighborhood of x in U , that we denote again by U and restrict ϕ to it.
45Introduced in mathematical practice by J.J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis,

Minneapolis, 1964, springer-Verlag, New York, 1965, pp. 81-94.
46Cf. A. Andreotti & C.D. Hill, Complex characteristic coordinates and the tangential Cauchy-Riemann equations, Ann. Scuola

Norm. Sup., Pisa, 26(1972), 299-324.
47Cf. M. Kuranishi, Strongly pseudoconvex CR structures over small balls, I-III, Ann. of Math., 115(1982), 451-500; ibidem,

116(1982), 1-64; ibidem, 116(1982), 249-330.
48Cf. T. Akahori, A new approach to the local embedding theorem of CR structures, the local embedding theorem for n ≥ 4,

Amer. Math. Soc. Memoires, No. 366, 1987.
49Cf. L. Nirenberg, On a question of Hans Lewy, Russian Mathematical Surveys, 29(1974), 251-262.
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independent, so that there is no CR immersion
(
u1 , u2

)
: U → C2. Nirenberg’s argument is to

consider a sequence of open solid tori Tδν ⊂ H1 tending to the origin Tδν → 0 as ν → ∞, together
with a choice of φ such that φ > 0 on each Tδν and φ = 0 outside

⋃∞
ν=1 Tδν . Then∫

ϕ(∂Tδν )

(u ◦ ϕ−1) dw ∧ dz = 0, ν ≥ 1,

for any CR function u : H1 → C, of class C1, with respect to the new CR structure H(φ), thus
yielding (by Stokes’ theorem) ∫

Tδν

φ
∂u

∂t
dt ∧ dz ∧ dz = 0.

This shows that (∂u/∂t)0 = 0 and then (∂u/∂z)0 = 0, because u is a CR function with respect
to the canonical CR structure H(0) wherever φ = 0. Consequently (du1 ∧ du2)0 = 0 for any pair
of CR functions uj on (H1 , H(φ)) so that (u1 , u2) : U → C2 fails to be an immersion (for an
arbitrary neighborhood U ⊂ H1 of 0 ∈ H1).

L. Nirenberg’s non embeddable example was generalized to the vector valued case (i.e. for CR
functions u : U → X, with values in a complex Fréchet space, of Theodoresco class B1) by E.
Barletta et al.50.

It is unknown whether Nirenberg’s construction admits a several complex variables version (on the
Heisenberg group Hn with n ≥ 2).

Another open problem is to transplant Nirenberg’s construction to compact quotients H1/G(s),
0 < s < 1, by properly discontinuous actions [G(s) = {δms : m ∈ Z} is the discrete group gener-
ated by the parabolic dilation δs(z, t) = (sz, s2t), (z, t) ∈ H1] as considered by S. Dragomir51 for
different purposes52.

3.2. Hill’s example versus the unsolvability of the Lewy operator
Let L ≡ ∂/∂z − i z ∂t be the Lewy operator and let us consider the first order PDE

Lχ = ω (11)

where ω : H1 → C is a C∞ function.

Definition 3.2.1 We say (11) is solvable at a point (z0 , t0) ∈ H1 if there is an open set U ⊂ H1

such that (z0 , t0) ∈ U and there is a C∞ function χ : U → C such that Lχ = ω on U .

LetM = H1×C endowed with the Cartesian coordinates (z, t, ζ), and let us consider the complex
vector fields

P, Q ∈ C∞(T (M)⊗ C
)
, P ≡ ∂

∂ζ
, Q ≡ L+ ω(z, t)

∂

∂ζ
.

Then {P, Q} span a CR structure Hω onM , of type (2, 1). By a result of C.D. Hill53 the CR struc-
ture Hω is locally embeddable at (z0 , t0 , ζ0) ∈M if and only if (11) is solvable at (z0 , t0) [hence

50E. Barletta & S. Dragomir & F. Esposito & I.D. Platis, On Nirenberg’s non-embeddable CR structure, Complex Variables and
Elliptic Equations, 2021, https://doi.org/10.1080/17476933.2021.198603.

51S. Dragomir, On a conjecture of J.M. Lee, Hokkaido Math. J., (1)23(1994), 35-49.
52To provide examples and counterexamples vis-a-vis to the Lee conjecture.
53Cf. C.D. Hill, What is the notion of a complex manifold with smooth boundary?, Algebraic Analysis, 1(1988), 185-201.
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the unsolvability of the Lewy operator (the unsolvability of (11) for non real analytic choices of ω)
produces examples of 5-dimensional CR manifolds M which aren’t locally embeddable].

We ought to recall that Lewy’s proof54 of the unsolvability of L is merely that the solvability of
Lχ = ω at a point requires that ω be real analytic at that point. There is however much more55 in
the work by H. Lewy56 i.e. one builds a family {ωϵ}ϵ∈B\E of "free terms" (in fact, Baire category57

many) such that the equation Lχ = ωϵ has no solution.

Precisely, let ψ ∈ C∞(R) be a real valued, periodic, function that isn’t real analytic at any t ∈ R.
Also, let Qν = (ξν , ην , ζν) ∈ R3 be a sequence of points, which is dense in R3, and let us set

cν = 2−ν exp
(
− ρν

)
, ρν = |ξν |+ |ην |.

Also, let B be the Banach space of all bounded infinite sequences ϵ = {ϵν}ν≥1 of real numbers
ϵν ∈ R, with the norm ∥ϵ∥ = supν≥1

∣∣ϵν∣∣. The announced functions ωϵ are the sums of the series

ωϵ(x, y, t) =
∞∑
ν=1

ϵν cν ψ
′(t− 2 ην x+ 2 ξj y

)
, ϵ ∈ B.

Let us explain the rather vague "Baire category" statement, used by us above. To this end, let
Ων, n = B1/

√
n

(
Qν

)
⊂ R3 be the ball of center Qν = (ξν , ην , ζν) and radius 1/

√
n. Next, let

Eν, n ⊂ B consist of all ϵ ∈ B for which there is a solution χ ∈ C1
(
Ων, n

)
to the equation

Lχ = ωϵ (12)

such that58

χ(Qν) = 0, (13)∣∣Dαχ(P )
∣∣ ≤ n, |α| ≤ 1, P ∈ Ων, n , (14)∣∣Dαχ(P )−Dαχ(Q)

∣∣ ≤ n|P −Q|1/n , (15)
|α| = 1, P, Q ∈ Ων, n .

By a result of H. Lewy59 the sets Eν, n are closed subsets of B that are nowhere dense60. By Baire’s
Theorem B is a set of the second category in itself, hence the inclusion

E :=
⋃
ν ≥ 1
n ≥ 1

Eν, n ⊂ B

54Cf. H. Lewy, op. cit.
55In contrast with the opinion expressed at the time by Gaetano Fichera [Italian mathematician (1922-1996)] during one of his

many personal crusades.
56Cf. F. John, Partial Differential Equations, Applied Mathematical Sciences, Vol. 1, Springer-Verlag, New York-Heidelberg-

Berlin, 1982 (fourth edition), pp. 235-239.
57A subset E ⊂ S of a topological space is nowhere dense if its closure E has an empty interior. A subset E ⊂ S is a set of the

first category if E is a countable union of nowhere dense sets. A subset E ⊂ S is a set of the second category if it isn’t a set of the
first category. Baire’s Theorem is that for every complete metric space S the intersection of every countable family of dense open
subsets of S is dense in S. As a corollary of Baire’s Theorem, every complete metric space is of the second category in itself.

58Condition (14) represents bounds for χ and its first order derivatives in Ων, n, while (15) prescribes a uniform Hölder condition
on the first order derivatives. It should be mentioned the Lewy’s unsolvability result in its original formulation stated the existence
of ω ∈ C∞(R3) such that the equation Lχ = ω has no solution whose domain is an open set Ω ⊂ R3, with χ ∈ C1(Ω) and
χx, χy , χz Hölder continuous in Ω. The "Hölder continuity" requirement was later on removed by P. Hartman, On smooth linear
partial differential equations without solutions, Proc. Amer.Math. Soc., 10(1959), pp. 252-257.

59Cf. op. cit.
60That is Eν, n has no interior points (cf. also our previous footnote).
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is strict. By Hill’s result61 for every ϵ ∈ B \ E the CR structure Hωϵ isn’t locally embeddable at
any of the points Qν , ν ≥ 1.

No extension of C.D. Hill’s result62 to the vector valued case is known, so far. C.D. Hill’s exam-
ple ought to be revisited (in the vector valued setting), as prompted by the discussion of Lewy’s
unsolvability phenomenon due to E. Barletta & S. Dragomir63.

3.3. Rossi’s spheres
Let S3 = {(z, w) ∈ C2 : zz + ww = 1}. The canonical CR structure

T1,0(S
3) =

[
T (S3)⊗ C

]
∩ T ′(C2)

is the span of L0 ≡ w ∂/∂z − z ∂/∂w. Let us consider the first order differential operators

Lt = L0 + t L0 , |t| < 1,

and let H(t) be the CR structure on S3 spanned by Lt, so that
(
S3 , H(t)

)
with |t| < 1, t ̸= 0,

are the Rossi spheres64, known to be non globally embeddable i.e. there is no CR isomorphism
ϕ : (S3, H(t)) → N of a Rossi sphere onto a real hypersurface N ⊂ C2.

Given a strictly pseudoconvex CR manifoldM , endowed with a positively oriented contact form, E.
Barletta et al.65 introduced a natural weakening of the global CR embeddability problem, seeking
for a at least K-quasiconformal map ϕ :M → N ⊂ C2 i.e. a contact transformation

(dxϕ)H(S3)x = H(N)ϕ(x) , x ∈ S3 ,

such that for any X ∈ H(S3)

1

K
Gθ,H(t)(X,X) ≤ Gϕ

Θ(ϕ∗X, ϕ∗X)

λ(f ; θ, Θ)
≤ KGθ,H(t)(X,X),

θ =
i

2

(
∂ − ∂

)
(|z|2 + |w|2) ∈ P+(S

3, T1,0(S
3)) = P+(S

3 , H(t)),

Θ ∈ P+(N, T1,0(N)), ϕ∗Θ = λ(f ; θ,Θ) θ,

the finding of which amounts to solving the Beltrami equations, as derived by A. Korányi & H.M.
Reimann66. When M ∈

{
(S3, H(t)) : |t| < 1, t ̸= 0

}
E. Barletta et al.67 solved the Beltrami

equations
Lt(g) = µ( · , t)Lt(g)

on S3 [by using the Greiner-Kohn-Stein solution to the Lewy equation, and the Bargmann repre-
sentations of the Heisenberg group] for Sobolev-type solutions gt such that gt − v ∈ W 1,2

F (S3 , θ)
with v ∈ CR∞(S3 , H(0)). The weakened CR embeddability problem, as proposed by E. Barletta
et al.68, is otherwise open.

61Cf. op. cit.
62Cf. op. cit.
63Cf. E. Barletta & S. Dragomir, On Lewy’s unsolvability phenomenon, Complex Var. Elliptic Equations, (9)57(2012), 971-981.
64Cf. H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, In Proceedings of the Confer-

ence on Complex Analysis, Minneapolis, MA, USA, 16-21 March 1964; Springer: Berlin, Germany, 1965; pp. 242–256.
65Cf. E. Barletta & S. Dragomir & F. Esposito, Beltrami Equations on Rossi Spheres, Mathematics, 2022, 10, 371.

https://doi.org/10.3390/math10030371.
66Cf. A. Korányi & H.M. Reimann, Quasiconformal mappings on CR manifolds, In Conference in Honor of Edoardo Vesentini;

Springer: Berlin, Germany, 1988; pp. 59-75.
67Cf. op. cit.
68Cf. op. cit.
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ABSTRACT

Let (M, g) be a semi-Riemannian manifold. We denote by g, R, S, κ and C the
metric tensor, the Riemann-Christoffel curvature tensor, the Ricci tensor, the scalar
curvature and the Weyl conformal curvature tensor of (M, g), respectively. Using
these tensors we can define the (0, 6)-tensors R ·R, R ·C, C ·R, C ·C and Q(A, T ),
whereA is a symmetric (0, 2)-tensor and T a generalized curvature tensor (see, e.g.,
[32], [35] and [48]).
A semi-Riemannian manifold (M, g), dimM = n ≥ 2, is said to be an Einstein
manifold [4], or an Einstein space, if at every point of M its Ricci tensor S is
proportional to g, i.e., S = (κ/n) g on M , assuming that κ is constant when n = 2.
According to [4, p. 432], this condition is called the Einstein metric condition.
Einstein manifolds form a natural subclass of several classes of semi-Riemannian
manifolds which are determined by curvature conditions imposed on their Ricci
tensor [4, Table, pp. 432-433]. These conditions are called generalized Einstein
metric conditions [4, Chapter XVI].
The tensorR·C−C ·R of every semi-Riemannian Einstein manifold (M, g), n ≥ 4,
satisfies the following identities [44, Theorem 3.1] (see also [29, p. 100001-1] and
[48, p. 107])

R · C − C ·R =
κ

(n− 1)n
Q(g,R) =

κ

(n− 1)n
Q(g, C)

=
1

n− 1
Q(S,R)

=
1

n− 1
Q(S,C),

R · C − C ·R =
κ

n− 1
Q(g, C)−Q(S,C) = Q

(
κ

n− 1
g − S,C

)
. (1)

We can express the tensor R ·C−C ·R of some non-Einstein and non-conformally
flat semi-Riemannian manifolds (M, g), dimM ≥ 4, as a linear combination of
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(0, 6)-Tachibana tensors Q(A, T ), e.g., A = g or A = S and T = R or T = C.
These conditions form a family of generalized Einstein metric conditions. Semi-
Riemannian manifolds, and in particular hypersurfaces isometrically immersed in
spaces of constant curvature, satisfying such conditions were investigated in several
papers, see, e.g., [2, 12, 28, 32, 34, 35, 45, 48]. We refer to [26] (see also [29]) for
a survey of results on manifolds (hypersurfaces) satisfying such conditions.

If a non-quasi-Einstein and non-conformally flat semi-Riemannian manifold
(M, g), n ≥ 4, satisfies the following two curvature conditions of pseudosymmetry
type: R ·R = L1Q(g,R) and C ·C = L2Q(g, C), where L1 and L2 are some func-
tions, then the curvature tensor R is a linear combination of the Kulkarni-Nomizu
products formed by the metric tensor g and the Ricci tensor S [53, Theorem 3.1,
Teorem 3.2 (ii)]. A non-quasi-Einstein and non-conformally flat semi-Riemannian
manifold (M, g), n ≥ 4, with curvature tensorR expressed by the above-mentioned
linear combination of the Kulkarni-Nomizu products is called a Roter type mani-
fold, or a Roter manifold, or a Roter space (see, e.g., [10, Section 15.5], [26, 32, 35],
[48, Section 4]). Every Roter space satisfies (1) (see, e.g., [32, Proposition 3.3], [35,
Theorem 2.4 (ii)]).

Let M , dimM ≥ 4, be a hypersurface isometrically immersed in a space of con-
stant curvature such that at every point M has exactly two distinct principal cura-
tures, λ1 with multiplicity p and λ2 with multiplicity n − p, 2 ≤ p ≤ n − 2. If
(p1 − 1)λ1 + (n− p− 1)λ2 ̸= 0, then M is a Roter space, and in a consequence (1)
holds on M [27, Theorem 3.3].

Let M , dimM ≥ 4, be a hypersurface isometrically immersed in a space of con-
stant curvature such that at every point M has exactly three distinct principal cura-
tures. If the condition R ·C −C ·R = Q(g, T ), where T is a generalized curvature
tensor, is satisfied on M , then the tensor T is a linear combination of the curvature
tensor R and Kulkarni-Nomizu products formed by the metric tensor g, the Ricci
tensor S and its square S2 (cf. [34, Theorem 5.2]).

If at every point of a non-quasi-Einstein and non-conformally flat hypersurface M ,
dimM ≥ 4, isometrically immersed in a semi-Riemannian space of constant cur-
vature the tensor R · C − C · R is a linear combination of the tensors Q(g, C) and
Q(S,C), then (1) holds on M [35, Theorem 5.4].

1. Basic formulas

Let (M, g) be a connected n-dimensional, n = dimM ≥ 3, semi-Riemannian manifold of class
C∞ and ∇ its Levi-Civita connection. We define on M the endomorphisms X ∧A Y , R(X, Y ) and
C(X, Y ) by

(X ∧A Y )Z = A(Y, Z)X − A(X,Z)Y,

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

C(X, Y ) = R(X, Y )− 1

n− 2
(X ∧g SY + SX ∧g Y )− κ

(n− 2)(n− 1)
X ∧g Y,
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respectively, where X(M) is the Lie algebra of vector fields ofM , X, Y, Z ∈X(M),A a symmetric
(0, 2)-tensor, S the Ricci tensor, S the Ricci operator,

S(X, Y ) = tr{Z → R(Z,X)Y },
g(SX, Y ) = S(X, Y ),

and κ = trS the scalar curvature. The Riemann-Christoffel curvature tensor R, the Weyl confor-
mal curvature tensor C and the (0, 4)-tensor G of (M, g) are defined by

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4)

= R(X1, X2, X3, X4)−
1

n− 2
(g(X1, X4)S(X2, X3)− g(X1, X3)S(X2, X4)

+g(X1, X4)S(X2, X3)− g(X1, X3)S(X2, X4))

+
κ

(n− 2)(n− 1)
(g(X1, X4) g(X2, X3)− g(X1, X3) g(X2, X4)),

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4)

= g(X1, X4) g(X2, X3)− g(X1, X3) g(X2, X4),

respectively, where X1, . . . , X4 ∈ X(M).

For symmetric (0, 2)-tensors E and F we define their Kulkarni-Nomizu product E ∧ F by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

−E(X1, X3)F (X2, X4)− E(X2, X4)F (X1, X3),

where X1, . . . , X4 ∈ X(M). Now we can express the Weyl conformal curvature tensor C by

C = R− 1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G, G =

1

2
g ∧ g .

For a symmetric (0, 2)-tensor E and an (0, k)-tensor T , k ≥ 3, we define their Kulkarni-Nomizu
product E ∧ T by (see, e.g., [24])

(E ∧ T )(X1, X2, X3, X4, Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

−E(X1, X3)T (X2, X4, Y3, . . . , Yk)− E(X2, X4)T (X1, X3, Y3, . . . , Yk),

where X1, . . . , X4, Y3, . . . , Yk ∈ X(M).

For a symmetric (0, 2)-tensorA and a (0, k)-tensor T , k ≥ 1, we define the (0, k+2)-tensorsR ·T ,
C · T and Q(A, T ) by

(R · T )(X1, . . . , Xk;X, Y ) = (R(X, Y ) · T )(X1, . . . , Xk)

= −T (R(X, Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,R(X, Y )Xk),

(C · T )(X1, . . . , Xk;X, Y ) = (C(X, Y ) · T )(X1, . . . , Xk)

= −T (C(X, Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, C(X, Y )Xk),

Q(A, T )(X1, . . . , Xk;X, Y ) = ((X ∧A Y ) · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

respectively. Setting in the above formulas T = R, T = S, T = C, A = g or A = S we obtain the
tensors: R ·R, R ·C, C ·R, C ·C, R · S and C · S, and Q(g,R), Q(g, C), Q(S,R), Q(S,C) and
Q(g, S).
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Let A be a symmetric (0, 2)-tensor and T a (0, k)-tensor. The tensor Q(A, T ) is called the
Tachibana tensor of A and T , or, briefly, the Tachibana tensor [34]. We like to point out that
in some papers the tensor Q(g,R) is called the Tachibana tensor (see, e.g., [60, 62, 63]).

Let (M, g), n ≥ 4, be a semi-Riemannian manifold. We define the following subsets of M : UR =
{x ∈M |R ̸= κ

2(n−1)n
g∧ g at x}, US = {x ∈M |S ̸= κ

n
g at x} and UC = {x ∈M |C ̸= 0 at x}.

We note that (see, e.g., [25, p. 151])

US ∪ UC = UR.

2. Pseudosymmetric, Ricci-pseudosymmetric and Weyl-pseudosymmetric manifolds

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetric if at every point of M
the tensors R · R and Q(g,R) are linearly dependent (see, e.g., [1, 11, 19, 36, 39, 71, 82]). The
manifold (M, g) is pseudosymmetric if and only if

R ·R = LRQ(g,R) (2)

on UR, where LR is some function on this set. Every semisymmetric manifold (R ·R = 0 [79, 80,
81]) is pseudosymmetric. The converse statement is not true.

We mention that pseudosymmetric manifolds admitting concircular vector fields were investigated
in [36].

It is well-known that the Schwarzschild spacetime was discovered in 1916 by Schwarzschild
and independently by Droste during their study on solutions of Einstein’s equations (see, e.g.,
[74]). That spacetime is a non-semisymmetric, pseudosymmetric spacetime [50]. It seems that
the Schwarzschild spacetime, the Kottler spacetime, the Reissner-Nordström spacetime, as well
as some FLRW spacetimes (Friedmann-Lemaître-Robertson-Walker spacetimes) are the "oldest"
examples of non-semisymmetric pseudosymmetric warped product manifolds (cf. [39, 59]).

It is known that hypersurfaces isometrically immersed in spaces of constant curvature with ex-
actly two distinct principal curvatures at every point are pseudosymmetric [51]. Thus in particular,
quasi-umbilical hypersurfaces isometrically immersed in spaces of constant curvature are pseu-
dosymmetric (see, e.g., [39]). We also note that in [57] a special subclass of semisymmetric
warped products was investigated. Among other things it was proved (see the proof of Lemma
3 of [57]) that the fiber (Ñ , g̃) with dim Ñ ≥ 3, of a semisymmetric warped product manifold
M ×F Ñ satisfies (1).

According to [68] (see also [69, 70]), a pseudosymmetric manifold (M, g), n ≥ 3, (R · R =
LRQ(g,R)) is said to be pseudosymmetric space of constant type if the function LR is constant
on UR ⊂M .

Theorem 2.1(cf. [15]) Every type number two hypersurface M isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1

s (c), n ≥ 3, is a pseudosymmetric space of constant
type. Precisely,

R ·R =
κ̃

n(n+ 1)
Q(g,R)

on UR ⊂M , where κ̃ is the scalar curvature of the ambient space.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ricci-pseudosymmetric if at every point
of M the tensors R ·S and Q(g, S) are linearly dependent (see, e.g., [19]). The manifold (M, g) is
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Ricci-pseudosymmetric if and only if

R · S = LS Q(g, S) (3)

on US , where LS is some function on this set. Every Ricci-semisymmetric manifold (R ·
S = 0) is Ricci-pseudosymmetric. The converse statement is not true. According to [54], a
Ricci-pseudosymmetric manifold (M, g), n ≥ 3, (R · S = LS Q(g, S)) is said to be Ricci-
pseudosymmetric manifold of constant type if the function LS is constant on US ⊂M .

Theorem 2.2 (cf. [52]) If M is a hypersurface isometrically immersed in a Riemannian space of
constant curvature Nn+1(c), n ≥ 3, such that at every point of M there are principal curvatures
0, . . . , 0, λ, . . . , λ,−λ, . . . ,−λ, with the same multiplicity of λ and −λ, and λ is a positive function
on M , then M is a Ricci-pseudosymmetric manifold of constant type. Precisely,

R · S =
κ̃

n(n+ 1)
Q(g, S)

on M . In particular, every Cartan hypersurface is a Ricci-pseudosymmetric manifold of constant
type.

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be Weyl-pseudosymmetric if at every point
of M the tensors R · C and Q(g, C) are linearly dependent (see, e.g., [37]). The manifold (M, g)
is Weyl-pseudosymmetric if and only if

R · C = LC Q(g, C) (4)

on UC , where LC is some function on this set. It is easy to check that every pseudosymmetric
manifold (R · R = LRQ(g,R)) is Weyl-pseudosymmetric (R · C = LRQ(g, C)). In particular,
every semisymmetric manifold (R · R = 0) is Weyl-semisymmetric (R · C = 0). If dimM ≥ 5
the converse statements are true. Precisely, if R ·C = LC Q(g, C), resp., R ·C = 0, is satisfied on
UC ⊂M , then R ·R = LC Q(g,R), resp., R ·R = 0, holds on UC ([37], resp., [58]). An example
of a 4-dimensional Riemannian manifold satisfying R · C = 0, with non-zero tensor R · R, was
found by Derdziński [18]. An example of a 4-dimensional submanifold isometrically immersed in
a 6-dimensional Euclidean space E6 satisfying R · C = 0, with non-zero tensor R · R, was found
by Zafindratafa [87]. For further results on 4-dimensional semi-Riemannian manifolds satisfying
R · C = 0 or R · C = LQ(g, C) we refer to the following papers: [20, 21, 40, 52]. We also refer
to [3, 9, 26, 39, 59, 60, 62, 63, 77, 82, 83, 84, 85, 86]. for further results on semi-Riemannian
manifolds satisfying (2), (3) or (4).

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be a quasi-Einstein manifold if

rank (S − α g) = 1

on US ⊂M , where α is some function on this set (see, e.g., [28]). According to [23], a Riemannian
manifold Mn whose Ricci tensor has an eigenvalue of multiplicity at least n-1 is called quasi-
Einstein. Every non-Einstein warped product manifold M ×F Ñ of a 1-dimensional (M, g) base
manifold and a 2-dimensional manifold (Ñ , g̃) or an (n−1)-dimensional Einstein manifold (Ñ , g̃),
n ≥ 4, with a warping function F , is a quasi-Einstein manifold (see, e.g., [12, 29]).

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations
and the investigation on quasi-umbilical hypersurfaces of conformally flat spaces, see, e.g., [26]
and references therein. Quasi-Einstein hypersurfaces in semi-Riemannian spaces of constant cur-
vature were studied among other things in: [28, 45, 55].
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According to a well-known Theorem of Cartan and Schouten, a hypersurface M in a conformally
flat Riemannian manifold Ñ , dim Ñ ≥ 5, is conformally flat if and only if it is quasi-umbilical
[5, 76]. This result remains valid when M is a conformally flat hypersurface in a conformally
flat semi-Riemannian manifold Ñ , dim Ñ ≥ 5, [49]. From the above presented results we obtain
immediately

Theorem 2.3 Every conformally flat hypersurface M isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1

s (c), n ≥ 4, is a quasi-Einstein manifold.

Further we have

Theorem 2.4 [17, 38] Let (M, g) be a 3-dimensional semi-Riemannian manifold or a conformally
flat semi-Riemannian manifold of dimension ≥ 4. Then on US ⊂M the following three conditions
are equivalent to each other:

R ·R = ρQ(g,R),

R · S = ρQ(g, S),

S2 − tr(S2)

n
g =

(
κ

n− 1
+ (n− 2)ρ

)
(S − κ

n
g),

where ρ is some function on US .

Theorem 2.5 [39] Every conformally flat hypersurface M isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1

s (c), n ≥ 4, is a quasi-Einstein pseudosymmetric
manifold. Precisely, if rank(S − α g) = 1 on US ⊂M then

R ·R =

(
κ

n− 1
− α

)
Q(g,R)

on US , where α is some function on this set.

From this it follows immediately

Corollary 2.5 Let M be hypersurface isometrically immersed in a Riemannian space of constant
curvature Nn+1(c), n ≥ 3. Let ρ1, ρ2, . . . , ρn be the eigenvalues of the Ricci operator S of M . If
at every point of US ⊂M we have ρ1 = . . . = ρn−1 ̸= ρn then

rank (S − ρ1 g) = 1 and R ·R =
ρn

n− 1
Q(g,R)

on US . We mention that 3-dimensional Riemannian manifolds with two disinct eigenvalues of the
Ricci operator, i.e., with two distinct principal Ricci curvatures, were investigated among other
things in: [61, 65, 66, 67, 68, 69, 70].

3. Roter spaces

Theorem 3.1 [53, Theorem 3.1, Theorem 3.2 (ii)] If (M, g), n ≥ 4, is a semi-Riemannian manifold
satisfying on the set US ∩ UC ⊂M the following two conditions:

R ·R = LRQ(g,R) and C · C = LC Q(g, C),

where LR and LC are some functions on US ∩ UC , then

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g (5)
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on the set U of all points of US ∩ UC at which rank (S − τ g) > 1 for any τ ∈ R, where ϕ, µ, η
are some functions defined on U .

Theorem 3.2 [41, Theorem 3.1, Theorem 3.2 (ii)] If (M, g), n ≥ 4, is a semi-Riemannian manifold
satisfying on the set US ∩ UC ⊂M the following two conditions:

R ·R = LRQ(g,R) and R ·R−Q(S,R) = LQ(g, C),

where LR and L are some functions on US∩UC , then (5) holds on the set U of all points of US∩UC

at which rank (S − τ g) > 1 for any τ ∈ R.

Theorem 3.3 (cf. [25, Proposition 3.2, Theorem 3.3, Theorem 4.4]) If (M, g), n ≥ 4, is a semi-
Riemannian manifold satisfying on the set US ∩ UC ⊂M the following three conditions:

C · C = LC Q(g, C),

R ·R−Q(S,R) = LQ(g, C),

R · S = Q(g,D),

where L and LC are some functions on US ∩ UC and D is a symmetric (0, 2)-tensor on this set,
then the Roter equation (5) holds on the set U of all points of US ∩UC at which rank (S− τ g) > 1
for any τ ∈ R.

Theorem 3.4 (see, e.g., [32, 64]) Let (M, g), n ≥ 4, be a semi-Riemannian manifold and let (5)
be satisfied on US ∩ UC ⊂M , i.e.,

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g ,

where ϕ, µ and η are some functions on this set. Then on US ∩ UC we have

S2 = α1 S + α2 g, α1 = κ+
(n− 2)µ− 1

ϕ
, α2 =

µκ+ (n− 1)η

ϕ
,

R ·R = LRQ(g,R), LR =
1

ϕ

(
(n− 2)(µ2 − ϕη)− µ

)
,

R ·R = Q(S,R) + LQ(g, C), L = LR +
µ

ϕ
=

n− 2

ϕ
(µ2 − ϕη),

C ·R = LC Q(g,R), LC = LR +
1

n− 2

(
κ

n− 1
− α1

)
,

C · C = LC Q(g, C).

Moreover, we have on US ∩ UC

R · C = LRQ(g, C),

C ·R = Q(S,C) +

(
LR − κ

n− 1

)
Q(g, C),

R · C − C ·R =

(
1

ϕ
(µ− 1

n− 2
) +

κ

n− 1

)
Q(g,R)

+

(
µ

ϕ
(µ− 1

n− 2
)− η

)
Q(S,G),

R · C − C ·R =
1

n− 2
Q(S,R) +

(
(n− 1)µ− 1

(n− 2)ϕ
+

κ

n− 1

)
Q(g,R)

+
µ((n− 1)µ− 1)− (n− 1)ϕη

(n− 2)ϕ
Q(S,G),
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C ·R +R · C = Q(S,C) +

(
2LR − κ

n− 1

)
Q(g, C),

C ·R−R · C = Q(S,C)− κ

n− 1
Q(g, C).

Remark 3.5 (i) We note that if (5) holds at a point of US ∩ UC ⊂ M , n ≥ 4, then at this point we
have rank(S − α g) > 1 for any α ∈ R (see, e.g., [32, 43]).
(ii) (see, e.g., [32, 43, 64]) A semi-Riemannian manifold (M, g), n ≥ 4, satisfying (5) on US∩UC ⊂
M is called a Roter space, or a Roter type space, or a Roter type manifold.
(iii) (see, e.g., [78]) In the standard Schwarzschild coordinates (t; r; θ;ϕ), and the physical units
(c = G = 1), the Reissner-Nordström-de Sitter (Λ > 0), and the Reissner-Nordström-anti-de Sitter
(Λ < 0) metrics are given by the line element

ds2 = −h(r) dt2 + h(r)−1 dr2 + r2 (dθ2 + sin2 θ dϕ2),

h(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, M,Q,Λ− non-zero constants. (6)

(iv) (see, e.g., [35, Section 2] The metric (6) satisfies (5) with

ϕ =
3

2
(Q2 −Mr)r4Q−4, µ =

1

2
(Q4 + 3Q2Λr4 − 3ΛMr5)Q−4,

η =
1

12
(3Q6 + 4Q4Λr4 − 3Q4Mr + 9Q2Λ2r8 − 9Λ2Mr9)r−4Q−4.

(v) If we set Λ = 0 in (6) then we obtain the line element of the Reissner-Nordström spacetime,
see, e.g., [56, Section 9.2] and references therein. It seems that the Reissner-Nordström spacetime
is the "oldest" known example of a Roter type warped product manifold.
(vi) [40, Abstract] We determine a particular class of Roter type warped product manifolds. We
show that every manifold of that class admits a non-trivial geodesic mapping onto some Roter type
warped product manifold. Moreover, both geodesically related manifolds are pseudosymmetric of
constant type.
(vii) Some comments on pseudosymmetric manifolds (also called Deszcz symmetric spaces), as
well as Roter spaces, are given in [14]: "From a geometric point of view, the Deszcz symmetric
spaces may well be considered to be the simplest Riemannian manifolds next to the real space
forms." and "From an algebraic point of view, Roter spaces may well be considered to be the sim-
plest Riemannian manifolds next to the real space forms."
(viii) [13, Abstract] An algebraic classification of the Roter type spacetimes is given. It follows
that the Roter-type curvature condition is essentially equivalent with the pseudosymmetry condi-
tion on 4-dimensional Lorentzian manifolds.
(ix) We mention that in the Chen’s survey paper on Wintgen ideal submanifolds [Chen-2021], in
Section 15 (Symmetry of Wintgen ideal submanifolds) results on Wintgen ideal submanifolds sat-
isfying pseudosymmetry type curvature conditions are given. Among other things, the following
result of [14] is presented (cf. [10, Theorem 15.11]: Let Mn (n ≥ 4) be a Wintgen ideal sub-
manifold of a real space form Rm(c). Then Mn is pseudosymmetric if and only if Mn is a Roter
space.

Example 3.6 [46, Example 4.1] (i) Let Sp( 1√
c1
), be the p-dimensional, p ≥ 2, standard sphere of

radius 1√
c1

, c1 = const. > 0, with the standard metric g. Let f be a non-constant function on
Sp( 1√

c1
) satisfying the following differential equation [72]

∇(df) + c1 f g = 0 .
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We set F = (f + c)2, where c is a non-zero constant such that f + c is either positive or negative
on Sp( 1√

c1
).

(ii) Let (Ñ , g̃), n − p = dim Ñ ≥ 2, be a semi-Riemannian space of constant curvature c2. We
consider the warped product Sp( 1√

c1
) ×F Ñ of the manifolds Sp( 1√

c1
) and (Ñ , g̃) with the above

defined warping function F .
(iii) We can check that the warped product

Sp

(
1

√
c1

)
×F Ñ

satisfies the Roter equation. In particular, the warped product

Sp

(
1

√
c1

)
×F S

n−p

(
1

√
c2

)
,

where 2 ≤ p ≤ n− 2 and c1 > 0, c2 > 0, also satisfies the Roter equation.
(iv) We also can prove that Sp( 1√

c1
) ×F Ñ can be locally realized as a hypersurface isometrically

immersed in a semi-Riemannian space of constant curvature.

Example 3.7 [31, Example 5.4] (i) Let Np
s1
(c1)×Nn−p

s2
(c2) be the Cartesian product of two semi-

Riemannian spaces of constant curvatureNp
s1
(c1) andNn−p

s2
(c2), 2 ≤ p ≤ n−2, where c1 = κ1

(p−1)p
,

c2 = κ2

(n−p−1)(n−p)
and κ1 and κ2 are the scalar curvatures of Np

s1
(c1) and Nn−p

s2
(c2), respectively.

The scalar curvature κ of the product Np
s1
(c1)×Nn−p

s2
(c2) is expressed by

κ = κ1 + κ2 = p(p− 1) c1 + (n− p)(n− p− 1) c2.

The productNp
s1
(c1)×Nn−p

s2
(c2) is a semisymmetric manifold (R·R = 0). Moreover, if c1+c2 ̸= 0

then the following condition is satisfied

C · C = −(p− 1)(n− p− 1)

(n− 2)(n− 1)
(c1 + c2)Q(g, C).

(ii) We assume that c1 and c2 satisfy

(a) c1 + c2 ̸= 0 and (b) (p− 1) c1 − (n− p− 1) c2 ̸= 0.

Now we have US ∩ UC = Np
s1
(c1) × Nn−p

s2
(c2). Thus the product Np

s1
(c1) × Nn−p

s2
(c2) is a non-

conformally flat and non-Einstein semi-Riemannian manifold. Moreover

ϕ = τ (c1 + c2),

µ = −(n− 2)τ c1c2,

η = τ c1c2 ((p− 1)2c1 + (n− p− 1)2c2),

τ = ((p− 1)c1 − (n− p− 1)c2)
−2.

Remark 3.8 (i) Let S and S be the Ricci tensor and the Ricci operator of a semi-Riemannian
manifold (M, g), n ≥ 3, respectively. The (0, 2)-tensor S2 of (M, g) is defined by S2(X, Y ) =
S(S(X), Y ), where X and Y are vector fields on M .
(ii) It is easy to verify that the following identity is satisfied on every Einstein semi-Riemannian
manifold (M, g), n ≥ 4,

g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g = 0. (7)
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(iii) [27, Lemma 2.1] If rank (S − α g) = 1 on US ⊂ M , where α is some function on US , then
(7) holds on US .
(iv) [27, Lemma 2.2] If (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying (5), i.e.,

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g

on US ∩ UC ⊂M then

C =
ϕ

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g

)
on this set.

4. The difference tensor R · C − C ·R

On every semi-Riemannian manifold (M, g), n ≥ 4, the following identity is satisfied

(n− 2)(R · C − C ·R) = Q(S,R)− κ

n− 1
Q(g,R)− g ∧ (R · S) + P, (8)

where the (0, 6)-tensor P is defined by
P (X1, X2, X3, X4;X, Y )

= g(X,X1)R(S(Y ), X2, X3, X4)− g(Y,X1)R(S(X), X2, X3, X4)

+g(X,X2)R(X1,S(Y ), X3, X4)− g(Y,X2)R(X1,S(X), X3, X4)

+g(X,X3)R(X1, X2,S(Y ), X4)− g(Y,X3)R(X1, X2,S(X), X4)

+g(X,X4)R(X1, X2, X3,S(Y ))− g(Y,X4)R(X1, X2, X3,S(X)).

The local expression of the basic identity (8) is the following
(n− 2)(R · C − C ·R)hijklm

= Q(S,R)hijklm − κ

n− 1
Q(g,R)hijklm

+ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi

−gij(R · S)hklm − ghk(R · S)ijlm + gik(R · S)hjlm + ghj(R · S)iklm,
where Amijk = grsSmrRsijk and

(R · S)hklm = grs(ShrRsklm + SkrRshlm),

Q(g, S)hklm = ghlSkm + gklShm − ghmSkl − gkmShl,

Q(g,R)hijklm = ghlRmijk + gilRhmjk + gjlRhimk + gklRhijm

−ghmRlijk − gimRhljk − gjmRhilk − gkmRhijl,

Q(S,R)hijklm = ShlRmijk + SilRhmjk + SjlRhimk + SklRhijm

−ShmRlijk − SimRhljk − SjmRhilk − SkmRhijl,

(R · C)hijklm = grs(CrijkRshlm + ChrjkRsilm + ChirkRsjlm + ChijrRsklm),

(C ·R)hijklm = grs(RrijkCshlm +RhrjkCsilm +RhirkCsjlm +RhijrCsklm).

Theorem 4.1 [44, Theorem 3.1] On every Einstein semi-Riemannian manifold (M, g), n ≥ 4, the
following identities are satisfied

R · C − C ·R =
κ

(n− 1)n
Q(g,R) =

κ

(n− 1)n
Q(g, C). (9)
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Remark 4.2 Let (M, g), n ≥ 4, be an Einstein semi-Riemannian manifold. From (9) we get
immediately

R · C − C ·R =
1

n− 1
Q(S,R) =

1

n− 1
Q(S,C).

Moreover, on every Ricci flat semi-Riemannian manifold we have

R · C = C ·R.

Theorem 4.3 [35, Theorem 2.3] Let (M, g), n ≥ 4, be an Einstein semi-Riemannian manifold.
(i) The condition (1), i.e.,

R · C − C ·R =
κ

n− 1
Q(g, C)−Q(S,C)

on M .
(ii) If the condition R ·R = LRQ(g,R) is satisfied on UR ⊂M then on this set we have

R ·R−Q(S,R) =
(
LR − κ

n

)
Q(g, C),

C · C =

(
LR − κ

(n− 1)n

)
Q(g, C),

R · C + C ·R = Q(S,C) +

(
2LR − κ

n− 1

)
Q(g, C).

Theorem 4.4 ([44, Theorem 4.1, Proposition 4.2, Proposition 4.3], [28, Theorem 6.4]) Let (M, g),
n ≥ 4, be a semi-Riemannian manifold.
(i) If the condition

R · C − C ·R = LQ(g, C)

is satisfied on US ∩ UC ⊂M then

R ·R = LQ(g,R), C ·R = 0

on this set.
(ii) If the conditions

S = µ g + β w ⊗ w,
∑
X,Y,Z

w(X) C(Y, Z) = 0

are satisfied on US ∩ UC ⊂ M , where µ and β are some functions and w a covector field on this
set, then

R ·R =
κ

(n− 1)n
Q(g,R), C ·R = 0

on US ∩ UC . Consequently on this set we have

R · C − C ·R =
κ

(n− 1)n
Q(g, C).

(iii) If the condition

C =
λ

2
(S − α g) ∧ (S − α g)
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is satisfied on US ∩ UC ⊂M , where α and λ are some functions on US ∩ UC , then

C ·R = 0, R ·R =

(
κ

n− 1
− λ

)
Q(g,R)

on US ∩ UC . Consequently on this set we have

R · C − C ·R =

(
κ

n− 1
− λ

)
Q(g, C).

Theorem 4.5 ([42, Theorem 3.1], [28, Theorem 6.1]) Let (M, g), n ≥ 4, be a semi-Riemannian
manifold satisfying on US ∩ UC ⊂M

R · C − C ·R = LQ(g,R), S − α g = β w ⊗ w,

where w is some 1-form on US ∩ UC and L, α, β are some functions on US ∩ UC . Then on this set
we have:

S = β w ⊗ w, κ = 0,
∑
X,Y,Z

w(X) C(Y, Z) = 0, R ·R = 0, R · C = C ·R = 0.

Theorem 4.6 ([42, Proposition 3.2], [28, Theorem 6.1 (ii)]) Let (M, g), n ≥ 4, be a semi-
Riemannian manifold satisfying on US ∩ UC ⊂M

S = β w ⊗ w, κ = 0,
∑
X,Y,Z

w(X)C(Y, Z) = 0.

Then on this set we have R ·R = 0, C ·R = 0, and consequently

R · C = C ·R = 0.

Theorem 4.7 ([42, Theorem 4.1], [28, Theorem 6.2 (i)]) Let (M, g), n ≥ 4, be a semi-Riemannian
manifold satisfying on U = US ∩ UC ⊂M

R · C − C ·R = LQ(g,R),

where L is some function on U . Moreover, let at every point of U : rank (S − τ g) > 1 for any
τ ∈ R. Then on this set we have

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g,

where ϕ, µ, η are some functions on U satisfying

η = αµ, α =
(n− 2)µ− 1

(n− 2)ϕ
.

Consequently, on U we have

R ·R = 0 and R · C = 0.

We have also the following inverse statement.

Theorem 4.8 ([42, Proposition 4.1], [28, Theorem 6.2 (ii)]) Let (M, g), n ≥ 4, be a semi-
Riemannian manifold. If on US ∩ UC ⊂M the tensor R is of the form

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g,
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with the functions ϕ, µ, η satisfying on this set

η = αµ, α =
(n− 2)µ− 1

(n− 2)ϕ

then

R ·R = 0, C ·R = −L2Q(g,R), L2 = α +
κ

n− 1
, R · C − C ·R = L2Q(g,R).

Remark 4.9 Let (M, g), n ≥ 4, be a semi-Riemannian manifold. If the Riemann-Christoffel
curvature tensor R has on US ∩ UC ⊂M the form (5), i.e.,

R =
ϕ

2
S ∧ S + µ g ∧ S + η G,

with some functions ϕ, µ, η on US ∩ UC , then on this set we have

R ·R = LRQ(g,R), LR = (n− 2)(αµ− η),

C ·R = LC Q(g,R), LC = LR − κ

n− 1
− α,

R · C − C ·R =

(
α +

κ

n− 1

)
Q(g,R) + (αµ− η)Q(S,G),

R · C − C ·R = (LR − LC)Q(g,R) +
1

n− 2
LRQ(S,G),

where

α =
(n− 2)µ− 1

(n− 2)ϕ
and G =

1

2
g ∧ g.

The last equation, by the identity

Q(S,G) = −Q(g, g ∧ S),

turns into

R · C − C ·R = (LR − LC)Q(g,R)−
1

n− 2
LRQ(g, g ∧ S)

= Q(g, (LR − LC)R− 1

n− 2
LR g ∧ S).

We recall that

R · C − C ·R = −Q(S,C) + κ

n− 1
Q(g, C) = Q

(
κ

n− 1
g − S,C

)
on US ∩ UC ⊂M .

Remark 4.10 (i) We refer to: [6, 7, 8, 9, 10, 73] for fundamental results on Chen ideal submani-
folds.
(ii) Chen ideal submanifolds satisfying pseudosymmetry type curvature conditions were investi-
gated among others in [33, 47].
(iii) Chen ideal submanifolds satisfying some generalized Einstein metric curvature conditions
were studied in [48]. For instance, Theorems 5, 6 and 7 of [48] contain results on Chen ideal
submanifolds M in En+m, n ≥ 4, m ≥ 1, satisfying at every point of US ∩ UC ⊂ M one of the
following conditions:
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(a) the tensor R · C − C ·R and the tensors Q(g,R) and Q(S,R) are linearly dependent,
(b) the tensor R · C − C ·R and the tensors Q(g, C) and Q(S,C) are linearly dependent,
(c) the tensor R · C − C ·R and the tensors Q(g, g ∧ S) and Q(S, g ∧ S) are linearly dependent.

Generalized Robertson-Walker spacetimes also satisfies generalized Einstein metric curvature con-
ditions. For instance, we have

Theorem 4.11 [12, Theorem 4.2] The warped product M ×F Ñ of an 1-dimensional manifold
(M, g) and an (n − 1)-dimensional, n ≥ 5, Einstein manifold (Ñ , g̃), which is not of constant
curvature, satisfies

rank
(
S −

(
κ

n− 1
− LS

)
g

)
= 1,

R · S = LS Q(g, S),

(n− 2) (R · C − C ·R) = Q(S,R)− LS Q(g,R),

where LS is some function on M ×F Ñ .

Corollary 4.12 The warped productM×F Ñ of an 1-dimensional manifold (M, g) and an (n−1)-
dimensional, n ≥ 4, Einstein manifold (Ñ , g̃), which is not of constant curvature, with the warping
function F (t) = t2, satisfies

rank
(
S − κ

n− 1
g

)
= 1,

R · S = 0,

(n− 2) (R · C − C ·R) = Q(S,R).

Theorem 4.13 [2, Theorem 4.1] If the warped product M ×F Ñ of an 1-dimensional manifold
(M, g) and an (n − 1)-dimensional, n ≥ 4, non-Einstein manifold (Ñ , g̃), satisfies on the set U ,
of all points of US ∩ UC ⊂M ×F Ñ at which Q(S,R) ̸= 0, the condition

R · C − C ·R = LQ(S,R),

for some function L on U , then

F (t) = (a t+ b)2, a, b ∈ R, a ̸= 0, L =
1

n− 2
.

We also recall the following result on 4-dimensional gneralized Robertson-Walker spacetimes.

Theorem 4.14 [16, Theorem 4.1] The warped product manifolds M ×F Ñ of an 1-dimensional
manifold (M, g) and a 3-dimensional semi-Riemannian manifold (Ñ , g̃) satisfies

R ·R−Q(S,R) = LQ(g, C),

where L is some function.

5. Hypersurfaces in semi-Riemannian spaces of constant curvature

Let Nn+1
s (c), n ≥ 3, be a semi-Riemannian space of constant curvature c = κ̃

n(n+1)
with signature

(s, n+ 1− s), where κ̃ is its scalar curvature. Let M be a hypersurface isometrically immersed in
Nn+1

s (c) and let g be the metric tensor induced on M from the metric of the ambient space and R
and κ the Riemann-Christoffel curvature tensor and the scalar curvature, respectively.
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LetH and A be the second fundamental tensor and the shape operator ofM , respectively. We have

H(X, Y ) = g(AX, Y ),

for any vectors fields X, Y tangent to M . The (0, 2)-tensors H2 and H3 are defined by

H2(X, Y ) = H(AX, Y ),

H3(X, Y ) = H2(AX, Y ),

respectively.

The Gauss equation of M in Nn+1
s (c) reads

R =
ε

2
H ∧H +

κ̃

2n(n+ 1)
g ∧ g, ε = ±1. (10)

On every hypersurface M in Nn+1
s (c), n ≥ 4, we have [49]

R ·R = Q(S,R)− (n− 2)κ̃

n(n+ 1)
Q(g, C). (11)

Theorem 5.1 [51] Let M be a hypersurface in Nn+1
s (c), n ≥ 3, satisfying on UR ⊂M

A2 = αA+ β Id (12)

where α and β are some functions on this set and Id is the identity transformation of M . Then

R ·R =

(
κ̃

n(n+ 1)
− εβ

)
Q(g,R)

on UR.

Corollary 5.2 A hypersurface M in a Riemannian space of constant curvature Nn+1(c), n ≥ 3,
having at every point of UR ⊂M two distinct principal curvatures is pseudosymmetric.

Let UA ⊂ M be the set of all points at which A2 cannot be expressed by a linear combination of
the second fundamental tensor A and the identity transformation Id of M . We can prove that

UA ⊂ US ∩ UC ⊂M.

Moreover, at at every point of (US ∩ UC) \ UA we have

A2 = αA+ β Id and tr(A)− α ̸= 0.

From the Gauss equation we have:

S = ε (tr(A)H −H2) +
(n− 1)κ̃

n(n+ 1)
g,

which, by (12), turns into

S = ε (tr(A)− α)H +

(
(n− 1)κ̃

n(n+ 1)
− εβ

)
g.

Theorem 5.3 [54] Let M be a hypersurface in Nn+1
s (c), n ≥ 3, satisfying (12) on (US ∩UC) \ UA,

where α and β are some functions on this set. Then

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g
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on (US ∩ UC) \ UA, where

ϕ = ε (tr(H)− α)−2,

µ = ϕ

(
εβ − (n− 1)κ̃

n(n+ 1)

)
,

η = ϕ

(
εβ − (n− 1)κ̃

n(n+ 1)

)2

+
κ̃

n(n+ 1)
.

Corollary 5.4 [54, Corollary 3.1, Example 3.2] On every Clifford torus

Sp

(√
p

n

)
× Sn−p

(√
n− p

n

)
, n ̸= 2p, 2 ≤ p ≤ n− 2,

the following equation is satisfied

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g.

Theorem 5.5 [22] A hypersurface M in Nn+1
s (c), n ≥ 4, is a pseudosymmetric manifold if and

only if at every point of UR ⊂M we have:

A2 = αA+ β Id, α, β ∈ R or rankH = 2.

Theorem 5.6 [15] Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on UA ⊂ M the

condition rankH = 2. Then on this set we have

R ·R =
κ̃

n(n+ 1)
Q(g,R).

Theorem 5.7 [30, Theorem 6.5] If on the subset UA of a hypersurface M in Nn+1
s (c), n ≥ 4, one

of the tensors R ·C, C ·R or R ·C −R ·C is a linear combination of R ·R and of a finite sum of
tensors of the form Q(E,B), where E is a symmetric (0, 2)-tensor and B a generalized curvature
tensor, then

A3 = tr(A)A2 + ψA+ ρ Id,

or equivalently,

H3 = tr(H)H2 + ψH + ρ g

on UA, where ψ and ρ are some functions on this set.

Theorem 5.8 [34, Theorem 5.2 (iii)] Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on

UA ⊂M the following equation

R · C − C ·R = Q(g,B),

where B is a generalized curvature tensor. Then on UA we have

B =

(
− εψ

n− 1
+

κ̃

n(n+ 1)

)
R +

(
− εψ

n− 1
+

2κ̃

n(n+ 1)

)
g ∧ S

− 1

n− 1
g ∧ S2 − 1

2(n− 2)(n− 1)
S ∧ S + λG,
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where λ is a function on this set.

Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on UA ⊂M

A3 = ϕA2 + ψA+ ρ Id, (13)

or equivalently,

H3 = ϕH2 + ψH + ρ g

on UA, where ϕ, ψ and ρ are some functions on this set. We set

µ =
1

n− 2

(
κ

n− 1
− κ̃

n+ 1

)
,

β1 = ε (ϕ− tr(A)),

β2 = − ε

n− 2

(
ϕ (2tr(A)− ϕ)− (tr(A))2 − ψ − (n− 2)εµ

)
,

β3 = εµtr(A) +
1

n− 2
(ψ (2tr(A)− ϕ) + (n− 3)ρ) ,

β4 = β3 − εβ2tr(A) +
(n− 1)κ̃β1
n(n+ 1)

,

β5 =
κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)
+ β1tr(A),

β6 = β2 −
(n− 3)κ̃

n(n+ 1)
. (14)

Theorem 5.9 [75, Theorem 6.7] If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on UA ⊂M

equation (13) then on this set we have

(n− 2)R · C = ρQ(H,G)− (n− 2)2κ̃

n(n+ 1)
Q(g,R)

+(n− 2)Q(S,R)− (n− 3)κ̃

n(n+ 1)
Q(S,G)

+(ϕ− tr(A)) g ∧Q(H,H2),

(n− 2)C ·R =

(
κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)

+(n− 3)Q(S,R)− (n− 3)κ̃

n(n+ 1)
Q(S,G)

+(ϕ− tr(A))H ∧Q(g,H2), (15)

(n− 2) (R · C − C ·R) = Q(S,R) +
(n− 1)κ̃

n(n+ 1)
Q(g,R) + ρQ(H,G)

+(ϕ− tr(A)) (g ∧Q(H,H2)−H ∧Q(g,H2)), (16)

(n− 2)C · C = (n− 3)Q(S,R) + β1Q(S, g ∧H) + β4Q(H,G)

+β5Q(g,R) + β6Q(S,G), (17)
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R · S =
κ̃

n(n+ 1)
Q(g, S) + ρQ(g,H)− εβ1Q(H,H

2), (18)

where β1, . . . , β6 are defined by (14). In particular, if M is a hypersurface in a Riemannian space
of constant curvature Nn+1(c), n ≥ 4, having at every point of UA ⊂ M exactly three distinct
principal curvatures ρ1, ρ2 and ρ3 then (16) - (18) hold on UA with

ϕ = ρ1 + ρ2 + ρ3,

ψ = −(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),

ρ = ρ1ρ2ρ3.
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Walker spacetimes satisfying some curvature condition, Turkish J. Math. 38 (2014), 353–373.

[3] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, On
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[18] A. Derdziński, Examples de métriques de Kaehler et d’Einstein autoduales sur le plan
complexe, in: Géométrie riemannianne en dimension 4 (Seminaire Arthur Besse 1978/79),
Cedic/Fernand Nathan, Paris 1981, 334–346.

[19] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. 44 (1992), Sér. A, Fasc. 1,
1–34.

[20] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseu-
dosymmetry curvature conditions, in: Geometry and Topology of Submanifolds, II, World
Sci., Teaneck, NJ, 1990, 134–143.

[21] R. Deszcz, On four-dimensional warped product manifolds satisfying certain pseudosymme-
try curvature conditions, Colloq. Math. 62 (1991), 103–120.

[22] R. Deszcz, Pseudosymmetric hypersurfaces in spaces of constant curvature, Tensor (N.S.), 58
(1997), 253–269.

[23] R. Deszcz, F. Dillen, L. Verstraelen and L. Vrancken, Quasi-Einstein totally real submanifolds
of the nearly Kähler 6 - sphere, Tôhoku Math. J. 51 (1999), 461–478.

[24] R. Deszcz and M. Głogowska, On nonsemisymmetric Ricci-semisymmetric warped product
hypersurfaces, Publ. Inst. Math. (Beograd) (N.S.) 72 (86) (2002), 81–93.

[25] R. Deszcz, M. Głogowska, H. Hashiguchi, M. Hotloś and M. Yawata, On semi-Riemannian
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ABSTRACT

An open problem in reliability theory is that of calculating the coefficients of the
reliability polynomials associated with particular networks. Since the reliability
polynomials can be expressed in Bernstein form (related to binomial coefficients),
an extension of the classical discrete Pascal’s triangle to a continuous version (the
Pascal’s Surface) might be geometrically helpful and revealing [6]. Another fa-
mous triangle, deeply involved in the reliability theory and counting problems, is
the Catalan triangle (formed by the ballot numbers [2]), which can be also extended
to a continuous surface [5]. We have investigated some geometric properties of
these two surfaces: Gauss curvature, mean curvature, geodesics and level curves, as
well as their symmetries [1, 2].

Keywords Reliability theory, Catalan triangle, Pascal triangle.

1. Pascal’s Triangle

Probably the most famous triangular arrangement of integers is the one containing the coefficients
of the binomial expansion of (x+ y)n. It is known as Pascal’s triangle, although the triangle itself
has been known and studied many centuries earlier by other mathematicians in India (Acharya
Pingala 3rd/2nd century B.C.), Halayudha (c. 10th century), the Arab world and Persia (Al-Karaji
(953–1029) and Omar Khayyam (1048–1131)), China (Jia Xian (1010-1070), Yang Hui (1238-
1298), and Zhu Shijie (1249-1314)), as well as Europe (Ramon Llull (1232-1316), Michael Stifel
(1487-1567), Petrus Apianus (1495-1552), Niccolo Tartaglia (1499-1557) and Marin Mersenne
(1588-1648)).
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Still, Pascal proved several important properties of the binomial coefficients, and wrote the first
modern treatise regarding this arithmetical triangle.

It seems that Blaise Pascal became aware of this arithmetical triangle for the first time when still
in his teens, during a visit to Mersenne. In 1636, Father Mersenne published a large arithmetical
triangle in Harmonicorum Libri XII (he wanted to apply the knowledge of combinatorics to musical
theory). Almost two decades later, in 1654, Pascal wrote Traité du Triangle Arithmétique, which
was not printed until 1665 (after Pascal’s death). Among other aspects, it details 19 properties
(Pascal called them Consequences) of the binomial coefficients that could be derived from this
arithmetic triangle. Some of the most important identities are represented by Consequences V and
VIII, which currently can be found in any high school math curriculum.

The first mathematician who named the triangle after Pascal was Pierre Raymond de Montmort in
1708, who called it Table de M. Pascal pour les combinaisons. Around 1730, Abraham de Moivre
called it Triangulum Arithmeticum Pascalianum and this name has stuck with Western scientists,
while being called Khayyam’s triangle in Iran, and Yang Hui’s triangle in China.

It should be mentioned that, using Pascal’s triangle, one can derive and investigate many notable
sequences of integers, e.g., Fibonacci, Catalan, Lucas, Bernoulli, and Stirling numbers.

Over time, Pascal’s triangle has been represented in more than one form. In the following, we
consider P (∞) the infinite symmetric matrix of components P (∞)i,j =

(
i+j
i

)
, for i, j ≥ 0:

P (∞) =



1 1 1 1 1 1 ...
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
1 4 10 20 35 56 ...
1 5 15 35 70 126 ...
1 6 21 56 126 252 ...
...

...
...

...
...

... . . .


. (1)

P (∞) is a perfect match of the form described by Pascal! (see Figure 1).
(https://commons.wikimedia.org/wiki/File:TrianguloPascal.jpg)

Direct computation shows that
P (∞) = L(∞)·L(∞)t, (2)

where L(∞) is the infinite lower triangular matrix

L(∞) =



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...

...
...

...
...

... . . .


(3)

with components L(∞)i,j =
(
i
j

)
, where

(
i
j

)
= 0 if i < j.

Using the Euler’s function gamma, which is a natural extension of the factorial to real numbers,

Γ(x) =

∫ ∞

0

tx−1e−tdt, Γ(n+ 1) = n!, n = 0, 1, . . . ,
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Figure 1:

Fowler [4] considered the extension of the classical integer binomial coefficients
(
n
k

)
to real num-

bers
(
y
x

)
(for 0 ≤ x ≤ y); he mentioned that this surface defined by the binomial function

C = y!/x!(y − x)! is Pascal’s triangle interpolated to a steeply rising ridge and that he knows
no evidence that the graph of C has ever been plotted before. This corresponds to the L(∞) form
of the triangle.

Pellicer and Alvo [7] introduced a generalization of the Pascal’s triangle (the Modified Pascal
Triangle) and extended the discrete Pascal’s triangle (as well as its modified version) to a contin-
uous graphical model corresponding to P (∞). They called these surfaces Pascal Surfaces and
constructed their equation using the Euler’s functions Gamma and Beta.

2. A Continuous Pascal’s Surface

Let xOy be a Cartesian coordinate system. Starting from the original Pascal’s triangle, we consider
the 3-dimensional version of the infinite triangle corresponding to P (∞) formed by the points(
i, j,

(
i+j
i

))
, for every nonnegative integers i, j (see Figure 2).

Figure 2: The 3-dimensional representation of the Pascal’s Triangle
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A continuous smooth surface interpolating the points
(
i, j,

(
i+j
i

))
is simply obtained by replacing

the binomial coefficients
(
x+y
y

)
= (x+y)!

x!y!
with the continuous version Γ(x+y+1)

Γ(x+1)Γ(y+1)
. Thus, we obtain

the Pascal’s Surface defined by the function

f : R2
+ → E3, f(x, y) = (x, y, z(x, y)) , wherez(x, y) =

Γ(x+ y + 1)

Γ(x+ 1)Γ(y + 1)
, x, y ≥ 0.

We have studied the geometrical properties of this surface (presented in Figure 3). Recall that

Figure 3: Pascal’s Surface

the digamma function ψ is defined as the logarithmic derivative of the gamma function:

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.

We denote by φy(x) the function
φy(x) = ψ(x+ y + 1)− ψ(x+ 1)

and calculate the coefficients of the first fundamental form, the unit normal vector to the Pascal’s
Surface, as well as the coefficients of the second fundamental form [3].

Thus, the mean curvature H and the Gauss curvature G have the following expressions:

H =
g22h11 − 2g12h12 + g11h22

2 det g
=

=
z(x, y)

2(det g)3/2
[
φ2
x(y) + φ2

y(x) + φ′
x(y)

(
1 + z2(x, y)φ2

y(x)
)
+ φ′

y(x)
(
1 + z2(x, y)φ2

x(y)
)

−2z2(x, y)φx(y)φy(x)ψ
′(x+ y + 1)

]
,

G =
h11h22 − h212

det g
= =

z2(x, y)

det2 g

[(
φ2
y(x) + φ′

y(x)
) (
φ2
x(y) + φ′

x(y)
)
− (φy(x)φx(y) + ψ′(x+ y + 1))

2
]
,

where
det g = 1 + z2(x, y)

(
φ2
x(y) + φ2

y(x)
)
.

The graphs of the functions H(x, y) and G(x, y) are presented in Figure 4.
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(a) (b)

Figure 4: (a) The mean curvature H(x, y); (b) the Gauss curvature G(x, y) of the Pascal’s Surface

3. A Catalan triangle

The Catalan numbers are one of the most well-known sequences of positive integers, closely related
to the binomial coefficients in the Pascal’s triangle. Richard Stanley [9] collected 214 combinato-
rial interpretations of Catalan numbers, illustrating their ubiquity. The book contains also a history
of the multiple (re)discoveries of Catalan numbers (written by Igor Pak). The most important
combinatorial interpretations of Catalan numbers are synthesised by the following theorem:

Theorem 3.1 The Catalan number Cn counts the following:

(i) Triangulations of a convex polygon with n+ 2 vertices.

(ii) Binary trees with n vertices.

(iii) Plane trees with n+ 1 vertices.

(iv) Bracketings of a string of n + 1 identical characters x subject to a nonassociative binary
operation.

(v) Ballot sequences of length 2n.

(vi) Dyck paths of length 2n.

The mathematical expression of these magnificent numbers is

Cn =
1

n+ 1

(
2n

n

)
, (4)

or, equivalently,

Cn =
(2n)!

n!(n+ 1)!
=

(
2n

n

)
−
(

2n

n− 1

)
. (5)

The Catalan numbers are closely related to the ballot numbers. These numbers occur in the solution
of the ballot problem, which can be formulated as follows: two candidates P and Q receive in an
election p and q votes respectively; supposing that P wins (p > q), what is the probability that P
stays (strictly) ahead of Q during the counting of votes? The solution was given by J. Bertrand in
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1887 and was also found by D. André using the reflection principle and reformulating the problem
in terms of lattice paths: a counting of votes such that P stays (strictly) ahead of Q corresponds
to a lattice path form (0, 0) to (p, q) with steps (1, 0) and (0, 1), staying under the line y = x (and
never touching it, except for (0, 0)).

Figure 5: Reflection of the part AT with respect to the line y = x.

Consider (see Figure 5) a lattice path from A to M that touches (or crosses) the line y = x at the
point T (k, k) for the first time. The part from A to T of the lattice path is reflected with respect to
the line y = x. Thus, there exists a one-to-one correspondence between the lattice paths from A′

to M and the lattice paths from A to M that have (at least) one vertex on the line y = x.

Since the number of lattice paths from A′(0, 1) to M(p, q) is equal to
(
p+q−1

p

)
, it follows that the

number of lattice paths that do not touch or cross the line y = x is equal to

B(p, q) =

(
p+ q − 1

p− 1

)
−
(
p+ q − 1

p

)
=
p− q

p+ q

(
p+ q

p

)
. (6)

By dividing the number of favourable cases (6) to the total number of possible cases, we obtain the
required probability p−q

p+q
.

The numbers B(p, q) are known as ballot numbers.

A ballot sequence of length 2n is a sequence of n 1’s and n −1’s, such that every partial sum is
nonnegative. From the relation above we obtain that the number of ballot sequences of length 2n
is the Catalan number Cn:

B(n+ 1, n) =
1

n+ 1

(
2n

n

)
= Cn.

If we write the numbers B(p, q), for every p = 1, 2, . . . and q = 0, 1, . . . , p we obtain a triangle
where the sequence of Catalan numbers appears twice (see ()).
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1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

... . . .

(7)

This triangle is known as the Catalan triangle, being recorded as the sequence A009766 in the
On-line Encyclopedia of Integer Sequences [8]. As a matter of fact, there exist several triangles
known as the Catalan triangle, but it seems that this is the most-standing form.

4. A Surface Associated to the Catalan Triangle

In the same way we extended the Pascal’s triangle to obtain the Pascal’s surface, we can extend
the Catalan triangle to obtain the continuous surface (see Figure 6) defined in the 3-dimensional
Euclidean space by the function

f1 : R2
+ ∖ {(0, 0)} → E3, f1(x, y) = (x, y, z1(x, y)) ,

where

z1(x, y) =
(x− y)Γ(x+ y)

Γ(x+ 1)Γ(y + 1)
=
x− y

x+ y
·z(x, y). (8)

It can be also written as

z1(x, y) =
Γ(x+ y)

Γ(x)Γ(y + 1)
− Γ(x+ y)

Γ(x+ 1)Γ(y)
= z(x− 1, y)− z(x, y − 1).

If x and y are nonnegative integers, then z1(x, y) = x−y
x+y

(
x+y
x

)
, which are exactly the numbers in

the Catalan triangle (), completed (for x ≤ y) to an (infinite) antisymmetric matrix:

∗ −1 −1 −1 −1 −1 −1 −1 −1 . . .
1 0 −1 −2 −3 −4 −5 −6 −7 . . .
1 1 0 −2 −5 −9 −14 −20 −27 . . .
1 2 2 0 −5 −14 −28 −48 −75 . . .
1 3 5 5 0 −14 −42 −90 −165 . . .
1 4 9 14 14 0 −42 −132 −297 . . .
1 5 14 28 42 42 0 −132 −429 . . .
1 6 20 48 90 132 132 0 −429 . . .
1 7 27 75 165 297 429 429 0 . . .
...

...
...

...
...

...
...

...
... . . .

(9)

We remark that the function z1(x, y) cannot be extended by continuity at (0, 0):

lim
x→0

z1(x, 0) = 1, and lim
y→0

z1(0, y) = −1,
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Figure 6: The surface associated to the Catalan triangle

so the limit lim
(x,y)→(0,0)

z1(x, y) does not exist.

Since z1(y, x) = −z1(x, y), for any x, y, we remark the symmetry of the surface w.r.t. the straight
line

L1 : x = y, z = 0.

We also remark that for x = y + 1 and x = y + 2 respectively, where y = n ∈ N, the Catalan
numbers are obtained:

z1(n+ 1, n) = Cn, z1(n+ 2, n) = Cn+1.

Similarly, for y = x+ 1 and y = x+ 2 respectively, (x = n ∈ N) we obtain:

z1(n, n+ 1) = −Cn, z1(n, n+ 2) = −Cn+1.

Besides the axis of symmetry, the surface contains four more straight lines:

L2 : y = 0, z = 1

L3 : y = 1, z = x− 1

L4 : x = 0, z = −1

L5 : x = 1, z = 1− y
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Moreover, one can prove that there are no more than these 5 lines entirely contained in the surface!

Theorem 4.1 The lines Li, i = 1, . . . , 5 are the only straight lines contained in the surface (S).

These geometrical properties of the surface associated to the Catalan triangle are illustrated in
Figure 7.

Figure 7: The points corresponding to Catalan numbers Cn (the blue ones) and negative Catalan numbers −Cn (the
green ones); the (red) lines L1, . . . , L5 contained in the surface associated to the Catalan triangle.

More general, we have the following result regarding the cross-section of the surface with planes
of the form x = n ∈ N and y = n ∈ N, respectively.

Proposition 4.2 The curves of intersection of the surface related to Catalan triangle with planes of
the form x = n ∈ N or y = n ∈ N are polynomials of degree n.

We denote by ϕy(x) the function

ϕy(x) = ψ(x+ y)− ψ(x+ 1) +
1

x− y
.

By straightforward computations the expressions of the mean curvatureH and the Gauss curvature
G are obtained:
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H =
g22h11 − 2g12h12 + g11h22

2 det g

=
z(x, y)

2(det g)3/2
[
ϕ2
x(y) + ϕ2

y(x) + ϕ′
x(y)

(
1 + z2(x, y)ϕ2

y(x)
)
+ ϕ′

y(x)
(
1 + z2(x, y)ϕ2

x(y)
)

−2z2(x, y)ϕx(y)ϕy(x)

(
ψ′(x+ y) +

1

(x− y)2

)]
,

G =
h11h22 − h212

det g

=
z2(x, y)

det2 g

[(
ϕ2
y(x) + ϕ′

y(x)
) (
ϕ2
x(y) + ϕ′

x(y)
)
−
(
ϕy(x)ϕx(y) + ψ′(x+ y) +

1

(x− y)2

)2
]
,

where det g = 1 + z2(x, y)
(
ϕ2
x(y) + ϕ2

y(x)
)
.

(a) (b)

Figure 8: (a) The mean curvature H(x, y); (b) the Gauss curvature G(x, y) of the surface associated to the Catalan
triangle.

Remark 4.3 If z(x, y) is an anti-symmetric function, that is,

z(y, x) = −z(x, y),

then the surface explicitly defined by z = z(x, y) has the mean curvature H(x, y) with the same
property,

H(y, x) = −H(x, y),

while the Gauss curvature G(x, y) is a symmetric function:

G(y, x) = G(x, y).
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These properties are satisfied by the surface z1(x, y), as it can be easily observed in Figure 8,
which presents the mean curvature and the Gauss curvature of the surface associated to the Catalan
triangle.
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[1] V. Beiu, L. Dăuş, M. Jianu, A. Mihai, I. Mihai, On a surface associated with Pascal’s triangle,
Symmetry 14(2) (2022), art. 411.
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[5] M. Jianu, S. Achimescu, L. Dăuş, I. Mierluş-Mazilu, A. Mihai, D. Tudor, On a surface asso-
ciated to Catalan triangle, Axioms 11(12) (2022), art. 685.
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ABSTRACT

During the past few decades, M-theory, a “theory of everything” has become a
very active and exciting area of research as a leading candidate to unify the four
fundamental forces of nature - electromagnetism, gravity, the weak and strong nu-
clear forces. In this paper we will discuss manifolds with special holonomy, spaces
whose infinitesimal symmetries play an important role in M-theory compactifica-
tions. We will begin by providing brief introductions to G2 manifolds and their
Harvey-Lawson submanifolds, followed by a survey of recent research exploring
the relations between symplectic, contact, and calibrated structures on such mani-
folds.

Keywords Special holonomy, almost contact structure, symplectic structure, G2

manifold, Calabi-Yau manifold.

1. Introduction

In 10-dimensional superstring theory, it is conjectured that the additional dimen-
sions of spacetime (10=4+6) form a 6-dimensional Calabi-Yau manifold. This im-
plies that, in this string theory, the universe is locally represented as R1,3 × X ,
where R1,3 is Minkowski space-time, and X is a 6-dimensional (real) Calabi-Yau
manifold. Similarly, in M-theory (considered a theory of everything), the extra di-
mensions of spacetime (11=4+7) are postulated to constitute a 7-dimensional G2

manifold. This means that the universe, within the framework of M-theory, is lo-
cally modeled on R1,3 × M , where R1,3 is Minkowski space-time, and M is a
7-dimensional (real) G2 manifold.
In this paper, we begin by providing brief introductions to Calabi-Yau and G2 man-
ifolds and then we explore geometric structures on G2 manifolds.
A 6-dimensional Riemannian manifold has an SU(3)-structure if the structure group
of its frame bundle is reduced to the compact, special unitary group SU(3). SU(3)
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is a Lie group consisting of 3× 3 complex matrices with determinant 1 and unitary
transformations:

SU(3) = {A ∈ C3×3 : A†A = I, det(A) = 1},

where A† represents the conjugate transpose of matrix A, I is the identity matrix,
and det(A) is the determinant of A. The condition A†A = I ensures unitarity, and
det(A) = 1 ensures that the matrices have determinant 1. A Calabi-Yau manifold
is a Kähler manifold with a holonomy group contained within SU(n), where SU(n)
is the special unitary group of complex n × n matrices. In this context, our focus is
on the case where n=3 for the Calabi-Yau manifold.
Similarly, a 7-dimensional Riemannian manifold M has a G2-structure if the struc-
ture group of its frame bundle is reduced to the compact, exceptional Lie group
G2. This condition implies that M is orientable and admits a spin structure. Al-
ternatively, it means that the first and second Stiefel-Whitney classes of M van-
ish. A 7-dimensional Riemannian manifold (M, g) is called a G2 manifold if the
holonomy group of its Levi-Civita connection for the metric g is contained within
G2 ⊂ SO(7).

A manifold with holonomy G2 was first introduced by E. Bonan in 1966, show-
ing that this manifold should be Ricci-flat [6]. In 1982, R. Harvey and B. Lawson
studied the geometric structures on G2 manifolds [13]. In 1989, R. Bryant and S.
Salamon constructed the first examples of non-compact manifolds with G2 holon-
omy [9]. Physicists are highly interested in G2 manifolds due to their crucial role
in M-theory compactifications.

More recently, in collaboration with F. Arikan and H. Cho [5], we showed that any
7-manifold with a spin structure, and thus a G2-structure, also admits a compatible
almost contact metric structure. Additionally, we showed that certain classes ofG2-
manifolds have a contact structure. For further details on geometric structures of
G2 manifolds and their applications, refer to [5], [8], [7], [10], [11], [12], and [13].

An Open Problem:

Calabi-Yau Theorem: If M is a compact Kähler manifold with Kähler metric g
and Kähler form ω , and R is any (1,1)-form representing the manifold’s first Chern
class, then there exists a unique Kähler metric g̃ on M with Kähler form ω̃ such that
ω and ω̃ represent the same class in cohomology H2(M,R) and the Ricci form of
ω̃ is R.

S.T. Yau proved this theorem (The Calabi Conjecture) in 1978, through the solvabil-
ity of the inhomogeneous complex Monge-Ampere equations on compact Kähler
manifolds.

One important advance in differential geometry will be to state and prove a theo-
rem analogous to the one for G2 manifolds, which is currently an open problem.
This will also contribute to our understanding of the topological obstructions to the
existence of G2 holonomy (Ricci flat) metrics on 7-manifolds.
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2. G2-structures

In this section we review the basics of G2 geometry. More on the subject can be
found in [1], [2], [3], [4], [8], and [13].

The set of octonions O = H
⊕

lH = R8 gives an 8 dimensional division algebra
generated by {1, i, j, k, l, li, lj, lk}. The set of imaginary octonions im(O) = R7

has a cross product operation × : R7 × R7 → R7, defined by u × v = Im(v ·
u), where · is the octonionic multiplication. The exceptional Lie group G2 is the
linear automorphisms of the imaginary octonions im(O) ∼= R7 preserving this cross
product.

By a theorem of Schouten, [8], [17], the group G2 can also be defined as the sub-
group of GL(7,R) which preserves the 3-form φ0 ∈ Ω3(R7),

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where (x1, ..., x7) are the coordinates on R7 and eijk = dxi ∧ dxj ∧ dxk. That is,

G2 = {A ∈ GL(7,R)|A∗φ0 = φ0}.

Then we can define the manifold with G2 structure:
Definition 2.1 A manifold with G2 structure is a smooth 7-dimensional manifold
M such that the structure group of M reduces to the exceptional Lie group G2.
Equivalently, it is a 7-dimensional manifold M that admits a nondegenerate 3-form
φ ∈ Ω3(M) such that at any point p ∈M ,

(TpM,φp) ∼= (R7, φ0).

A manifold with G2 structure determines a metric g and a cross product × on M
such that

φ(u, v, w) = g(u× v, w), u, v, w ∈ TM.

Definition 2.2 Suppose (M,φ) is a manifold with G2 structure. We call (M,φ) a
G2-manifold if φ is covariantly constant with respect to the Levi-Civita connection.
Note that the covariantly constant condition is equivalent to saying that the form φ
is closed and co-closed, i.e.

dφ = d ⋆ φ = 0.

In 1982, Harvey and Lawson called φ and ⋆φ the calibration 3-form and 4-form,
respectively, when they introduced calibrated submanifolds. They showed that cal-
ibrated submanifolds are volume-minimizing in their homology class.
Definition 2.3 A calibration is a closed p-form ϕ on a Riemannian manifold Xn

such that ϕ restricts to each oriented tangent p-plane of Xn to be less than or equal
to the volume form of that p-plane.
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Definition 2.4 The submanifolds of Xn for which the p-form ϕ restricts to be equal
to the Riemannian volume form are called to be calibrated by the form ϕ.

The term calibrated geometry represents the ambient manifold X , the calibration
ϕ, and the collection of submanifolds calibrated by ϕ.
There are two types of calibrated submanifolds of G2 manifolds.
Definition 2.5 Let (M,φ) be a G2 manifold with calibration 3-form φ. A 4-
dimensional submanifold C ⊂ M is called coassociative if φ|C = 0. A 3-
dimensional submanifold A ⊂M is called associative if φ|A = dvol(A).

Note that the condition φ|A = dvol(A) is equivalent to the condition that χ|A ≡ 0,
where χ ∈ Ω3(M,TM) is the tangent bundle-valued 3-form defined by the identity:

⟨χ(u, v, w), z⟩ = ∗φ(u, v, w, z).

The equivalence of these conditions follows from the ‘associator equality’ of

φ(u, v, w)2 + |χ(u, v, w)|2/4 = |u ∧ v ∧ w|2.

Then one can define “Harvey-Lawson” submanifolds, [4]:
Definition 2.6 A Harvey-Lawson manifold is a 3-dimensional submanifold HL ⊂
M of a G2 manifold such that

φ|HL = 0

Equivalently, this is defined by ⟨χ|HL, χ|HL⟩ = 1.

One can also define a tangent bundle-valued 2-form, which is just the cross product
of M , [3].

Definition 2.7 Let (M,φ) be a G2 manifold. Then ψ ∈ Ω2(M,TM) is the tangent
bundle-valued 2-form defined by the identity

⟨ψ(u, v), w⟩ = φ(u, v, w) = ⟨u× v, w⟩.

Note that at any point on M , there exists an orthonormal frame such that tangent
bundle-valued forms χ and ψ can be expressed as follows:

χ = (e256 + e247 + e346 − e357)e1

+ (−e156 − e147 − e345 − e367)e2

+ (e157 − e146 + e245 + e267)e3

+ (e127 + e136 − e235 − e567)e4

+ (e126 − e137 + e234 + e467)e5

+ (−e125 − e134 − e237 − e457)e6

+ (−e124 + e135 + e236 + e456)e7,

and
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ψ = (e23 + e45 + e67)e1

+ (e46 − e57 − e13)e2

+ (e12 − e47 − e56)e3

+ (e37 − e15 − e26)e4

+ (e14 + e27 + e36)e5

+ (e24 − e17 − e35)e6

+ (e16 − e25 − e34)e7

where e1, ..., e7 is the local orthonormal frame with dual frame e1, ..., e7.

3. Harvey-Lawson Submanifolds

It is well-known that a smooth symplectic manifold N2n admits a closed, non-
degenerate differential 2-form ω. An n-dimensional submanifold Ln of N2n is
called Lagrangian if the restriction of ω to L is zero. In symplectic geometry, there
is a famous quote by Alan Weinstein which says, ’Everything is Lagrangian,’ be-
cause every manifold is the Lagrangian zero section of its cotangent bundle. In our
recent paper [15], as a new quote, we stated that ’Every closed, oriented, smooth
3-manifold is Harvey-Lawson,’ and proved the following:
Theorem 3.1 Let (Y 3, g) be a closed, oriented, real analytic Riemannian 3–
manifold. Then there exists a G2–manifold M7 and an isometric embedding
i : Y ↪→M such that the image i(Y ) is a HL–submanifold, contained in a compact
coassociative submanifold of M .

In [8], R. Bryant proved that every closed, oriented, real analytic Riemannian 4-
manifold whose bundle of self-dual 2-forms is trivial can be isometrically embed-
ded as a coassociative submanifold in a G2-manifold, even as the fixed locus of an
anti-G2 involution. Moreover, there exists a tubular neighborhood of i(Y ) in M
which is trivial.

Let (Y 3, g) be a closed, oriented, real analytic Riemannian 3–manifold. Then the
oriented 4-manifold Y × S1 is spin and has zero signature. Moreover the Euler
characteristic is also zero. These imply that the bundle of self-dual 2-forms on
Y × S1 is topologically trivial. By [8], Y × S1 can be isometrically embedded
as a coassociative submanifold in a G2-manifold. Therefore, Y will be a Harvey-
Lawson submanifold of this G2-manifold.

We now study the normal bundle of a HL submanifold inside a G2 manifold M .
An orthonormal 3-frame field Γ = {u, v, w} on (M,φ) is called a G2-frame field if
φ(u, v, w) = ⟨u× v, w⟩ = 0, [1], [2]. It is also well known that there always exists
a nonvanishing 2-frame field Λ = {u, v} on a manifold with G2 structure, [18].

Let TM = E ⊕ V be the splitting with E = {u, v, u × v} and the corresponding
V. Let w be a unit section of the bundle V → M . The existence of w on the
entire manifold M is not guaranteed, but one can show that w exists on a tubular
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neighborhood of the 3-skeleton M (3) of M which is the complement of a 3 com-
plex Y ⊂ M . Let Γ = {u, v, w} be an orthonormal G2 frame field satisfying
φ(u, v, w) = ⟨u × v, w⟩ = 0, and we consider another non-vanishing vector field
defined as

R = χ(u, v, w) = −u× (v × w).

One can show that the following properties hold ( [4]):

(a) If {u, v, w} is a HL 3-plane field, then V = {u, v, w,R} is a coassociative
4-plane field.

(b) E = {u× v, v × w,w × u} is an associative 3-plane field.
(c) E ⊥ V and {u, v, w,R, u× v, v × w,w × u} is an orthonormal frame field on

M .

Using the identification of vectors and 1-forms through the metric g, the 3-form φ
can be expressed as

φ = u ∧ v ∧ (u × v) + v ∧ w ∧ (v × w) + w ∧ u ∧ (w × u)

+ u ∧R ∧ (v × w) + v ∧R ∧ (w × u) + w ∧R ∧ (u × v)

− (u × v) ∧ (v × w) ∧ (w × u).

Moreover, since {u, v, w,R, u×v, v×w,w×u} and {u, v, w,R,w×R, u×R, v×R}
are equivalent frames, φ can be written as

φ = u ∧ v ∧ (w ×R) + v ∧ w ∧ (u ×R) + w ∧ u ∧ (v ×R)

+ u ∧R ∧ (u ×R) + v ∧R ∧ (v ×R) + w ∧R ∧ (w ×R)

− (w ×R) ∧ (u ×R) ∧ (v ×R).

Using this expression for φ, the normal bundle of an HL submanifold can then be
decomposed as

N(HL) = Ñ(HL)⊕R,

where Ñ(HL) is generated by vector fields u × R, v × R, and w × R. Since
⟨ψ(u, v), w⟩ = φ(u, v, w) = ⟨u × v, w⟩ = 0 for an HL submanifold, Ñ(HL) is
isomorphic to T (HL). The cross product structure × (also known as ψ) induces
this isomorphism. Note that every oriented 3 manifold is parallelizable. So T (HL)
is trivial. And hence Ñ(HL) is trivial. So N(HL) = Ñ(HL)⊕ R is trivial.

Next, we study the deformations of HL-submanifolds in a G2 manifold. For more
on the subject, see [12]. Recall that McLean studied deformations of compact spe-
cial Lagrangian submanifolds in Calabi-Yau manifolds, [14]. Using the same ap-
proach we can prove the following theorem [12].
Theorem 3.2 The space of infinitesimal deformations of a smooth, compact, ori-
entable 3-dimensional Harvey-Lawson submanifoldHL in aG2 manifoldM within
the class of HL-submanifolds is infinite-dimensional. This space can be identified
with the direct sum of the spaces of smooth functions and closed 2-forms on HL.
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Proof. For a small vector field V , the deformation map is a map, F , defined from
an open neighborhood of zero in the space of sections of the normal bundle, U ⊂
Γ(N(HL)), to the space of differential 3-forms on HL, Λ3T ∗(HL), such that

F : U → Λ3T ∗(HL),

F (V ) = (expV )
∗(φ|HLV

).

This means that the deformation map F first restricts φ to HLV and then pulls this
back to HL via (expV )

∗ where expV is the normal exponential map that gives a
diffeomorphism of HL onto its image HLV in a neighborhood of 0.
Since HL is compact, normal vector fields can be identified with nearby submani-
folds. Under this identification, the kernel of F then corresponds to HL deforma-
tions.
The linearization of F at 0 is given by

dF (0) : Γ(N(HL)) → Λ3T ∗(HL)

where

dF (0)(V ) =
∂

∂t
F (tV )|t=0 =

∂

∂t
[exp∗

tV (φ)]

= [LV (φ)|HL] .

Further, by Cartan’s formula, we have

dF (0)(V ) = (ιV dφ+ d(ιV φ))|HL

= d(ιV φ)|HL,

where ιV represents the interior derivative. Using the decomposition of the normal
bundle, N(HL) = Ñ(HL)⊕ ⟨R⟩, we write

V = V ′ + VRR

Note that V ′ is isomorphic to a vector field V ′′ ∈ T (HL) since Ñ(HL) ∼= T (HL).
Therefore, we have

dF (0)(V ) = d((ιV ′φ) + VR(ιRφ))|HL

= d(ιV ′φ)|HL

= d(⋆η),

where η is the dual 1-form to the vector field V ′′ with respect to the induced metric,
and ⋆η is the Hodge dual of η on HL. Hence

dF (0)(V ) = d(⋆η) = d∗η.

Therefore, the set of nontrivial deformations forHL-submanifolds can be identified
with closed 2-forms on HL. However, this description omits additional deforma-
tions—specifically, the trivial deformations arising from the R component of the
vector field. These correspond to the deformation of a 3-dimensional HL mani-
fold within a coassociative submanifold. By definition, any such 3-manifold will be
HL, implying that deformations of HL within a coassociative submanifold in the
direction of R can be identified with smooth functions on HL.
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4. Contact and Almost Contact Manifolds

In this section we will review the properties of (almost) contact structures on man-
ifolds with G2 structure and show that every manifold with G2 structure is almost
contact. For more on the subject see [5].

Let M be a (2n + 1)-dimensional smooth manifold. A plane field (or hyperplane
distribution) ξ onM can (locally) be given as the kernel of 1-form α : ξx = ker(αx),
x ∈M .
Definition 4.1 A contact structure on M is a hyperplane field ξ that is (locally)
given by the kernel of a 1-form α such that α∧ (dα)n ̸= 0. The pair (M, ξ) is called
a contact manifold.

Definition 4.2 An almost contact structure on an odd-dimensional differentiable
manifold (M2n+1, J, R, α) consists of a field J of endomorphisms of the tangent
spaces, a vector field R, and a 1-form α satisfying the following conditions:

(i) α(R) = 1,

(ii) J2 = - id + α⊗R.

Here id denotes the identity transformation.
Definition 4.3 An almost contact metric structure on an odd-dimensional differen-
tiable manifold (M2n+1, J, R, α, g) consists of an almost contact structure (J,R, α)
and a Riemannian metric g satisfying

g(Ju, Jv) = g(u, v)− α(u)α(v)

for all vector fields u, v in TM . In this case such a g is called a compatible metric.
Theorem 4.1 ( A-C-S) Let (M7, φ) be a manifold withG2 structure. Then M admits
an almost contact structure. Moreover, for any non-vanishing vector field R on M ,
(J,R, αR, ⟨·, ·⟩φ = gφ) is an almost contact metric structure on M , [5].
Proof. Here we give an explicit construction of the almost contact structure. More
can be found in [5]. Let (M,φ) be a manifold with G2-structure. As M is 7-
dimensional there exists a nowhere vanishing vector field R on M . Let ⟨·, ·⟩ϕ de-
notes the Riemannian metric and ×φ denotes the cross product determined by φ.
Using the metric, we define the 1-form α as the metric dual of R, that is,

α(u) = ⟨R, u⟩φ.

The cross product ×φ and R defines an endomorphism JR : TM → TM of the
tangent spaces by

JR(u) = R×φ u.

We take the structure (JR, R, αR) described as above. Then we get

αR(R) = gφ(R,R) = 1
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and

J2
R(u) = JR(R×φ u) = R×φ (R×φ u) = −|R|2u+ gφ(R, u)R.

So we conclude that (JR, R, αR) is an almost contact structure on (M,φ).

Note that JR(R) = 0, and so JR, indeed, defines a complex structure on the orthog-
onal complement R⊥ of R with respect to ⟨·, ·⟩φ.

Next, we show that gφ=⟨·, ·⟩φ is a compatible metric with an almost contact structure
(JR, R, αR). In order to show this, we compute g(Ju, Jv) and show that it is equal
to g(u, v)− α(u)α(v) for all u, v ∈ TM .

⟨JRu, JRv⟩φ = ⟨R× u,R× v⟩ = φ(R, u,R× v)

= −φ(R,R× v, u) = −⟨R× (R× v), u⟩

= −⟨−|R|2v+⟨R, v⟩R, u⟩ = ⟨|R|2v, u⟩−⟨⟨R, v⟩R, u⟩⟩

= ⟨|R|2v, u⟩ − ⟨α(v)R, u⟩ = ⟨u, |R|2v⟩ − α(v)⟨R, u⟩

= ⟨u, |R|2v⟩ − α(v)α(u)

And hence g(Ju, Jv) = g(u, v)− α(u)α(v) for all u, v ∈ TM .

Note that in the special case where u = R (or v = R) then

⟨JRR, JRv⟩ = ⟨0, JRv⟩ = 0 and ⟨R, v⟩ − α(R)α(v) = α(v) −
α(v) = 0

And if u, v are both taken from the orthogonal complement R⊥ (wrt ⟨·, ·⟩φ), then

⟨JRu, JRv⟩ = ⟨R×u,R× v⟩ = φ(R, u,R× v) = −φ(R,R× v, u)

= −⟨R× (R× v), u⟩ = −⟨−|R|2v + ⟨R, v⟩R, u⟩

= −⟨−v, u⟩ = ⟨u, v⟩

We now prove an extension theorem that states the relations between contact struc-
tures on submanifolds (associative and Harvey-Lawson) and the ambient G2 mani-
fold.

Theorem 4.2 There is an almost contact structure on a G2-manifold M coming
from an (almost) contact structure on an associative 3-manifold Y . This also holds
for 3-dimensional HL submanifolds of M .
Proof. Let Y be an associative (or HL) 3-dimensional submanifold of M . Since Y
is 3-dimensional there always exists a contact structure ξY (= ker αY ) and a corre-
sponding almost contact metric structure (JY , RY , αY , gY ). Here JY is an almost
complex structure on ξY .

Note that the Stiefel manifold Vk(Rn), the set of all orthonormal k-frames in Rn is
equivalent to the set of ordered orthonormal k-tuples of vectors in Rn. It is an n −
k−1 connected, compact manifold whose dimension is given by nk−1/2k(k+1),
(4-connected for n = 7 and k = 2).
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One can use classical obstruction theory to show that there is no obstruction for the
homotopy extension theorem. Here we have the fibers given by V2(R7). If M has a
2-frame field, then this implies that the fiber bundle V2(R7) has a section. One can
check when two such sections of this fiber bundle are homotopic to each other using
obstruction theory. The number of the sections of V2(R7) is given by H i(Y, πi(F )),
where F is the fiber. Since Y is 3 dimensional and V2(R7) is 4-connected these
groups are zero up to homotopy, in another words, one can always deform one
section to the other.

Now, let ξY be the 2-plane spanned by two nonzero vectors u, v. By homotopy
extension theorem we can extend them to the ambient manifold G2 manifold M .
Denote u′ and v′ by the extensions of u and v respectively. One can easily check
that this extension of 2-plane field provides and almost contact structure on G2

manifold.

Let’s define a vector in M as R′ = u′ × v′ and a linear transformation J ′ : TpM →
TpM as J ′(u′) = R′ × u′. Then using the properties of the cross product we have

J ′(u′) = (u′ × v′)× u′ = −u′ × (u′ × v′)
= −(−|u′|2v′ + ⟨u′, v′⟩u′) = v′,

and if we apply J ′ again

J ′(J ′(u′)) = J ′(v′) = R′ × v′ = (u′ × v′)× v′

= −v′ × (u′ × v′)

= v′ × (v′ × u′) = −|v′|2u′ + ⟨v′, u′⟩v′ = −u′.

In general, one can show that for any nonzero vector w in the orthogonal comple-
ment of R′ ∈ TpM ,

J ′2(w) = J ′(J ′(w)) = J ′((u′ × v′)× w)

= (u′ × v′)× ((u′ × v′)× w)

= −|u′ × v′|2w + ⟨u′ × v′, w⟩(u′ × v′) = −w.

This implies that (J ′, R′, α′) is an almost contact structure of M for 1-form α′ that
satisfies ⟨R′, ·⟩φ= gφ(R′, ·) = α′(·).

5. Interesting Questions

In this paper, we explored the relationships among G2 structures, vector fields, and
(almost) contact structures on G2 manifolds and their Harvey-Lawson submani-
folds. An intriguing avenue for further investigation lies in understanding the con-
nections between Harvey-Lawson manifolds and the construction of certain ’mirror
dual’ Calabi-Yau submanifolds within a G2 manifold. Specifically, when given a
Harvey-Lawson manifold HL, it would be interesting to investigate how one can as-
sign a pair of tangent bundle-valued 2 and 3-forms to aG2 manifold (M,HL,φ,Λ),
where φ is the calibration 3-form and Λ is an oriented 2-plane field. As shown
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in [3], these forms can then be utilized to define different complex and symplec-
tic structures on certain 6-dimensional subbundles of T (M). Upon integration of
these bundles, mirror Calabi-Yau manifolds are obtained. Additionally, an intrigu-
ing question is how contact and symplectic structures in Calabi-Yau and G2 mani-
folds are related, along with the role of Harvey-Lawson submanifolds. Furthermore,
it is very interesting to understand how these contact and symplectic structures will
help to state and prove a theorem analogous to the one forG2 manifolds—a theorem
to find the topological condition to guarantee the existence of integrable G2 struc-
tures, which is currently an ’open problem,’ as mentioned earlier. We expect that
these geometric structures will contribute to our understanding of the topological
obstructions to the existence of G2 holonomy (Ricci flat) metrics on 7-manifolds.
In a future project, we plan to address these questions and extend the constructions
to Spin(7) manifolds and their submanifolds, [16].
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ABSTRACT

We give a brief overview of the variational theory of the family of higher-power energy
functionals for mappings between Riemannian manifolds, and its generalisation to sec-
tions of Riemannian fibre bundles, with particular emphasis on Riemannian vector bundles
and their sphere bundles. The main example is Ramachandran’s complete classification
of all higher-power harmonic left-invariant vector fields on 3-dimensional unimodular Lie
groups equipped with an arbitrary left-invariant Riemannian metric, which rounds out the
picture for harmonic vector fields in these cases obtained by Gonzalez-Davila and Van-
hecke [3].

Keywords Riemannian manifolds, Elementary invariants, Newton polynomials, Higher-
power energy and vertical energy, Newton tensors, 3-dimensional unimodular Lie
groups

1. Introduction

The ideas of “higher-power energy” and “higher-power harmonic maps” appeared
briefly in the foundational paper [1] of Eells and Sampson. However, despite the
subsequent popularity of harmonic mappings, they made comparitively little head-
way, at least within the differential geometric community69. During my graduate
studies (with Eells) I spent some time thinking about “higher-power harmonicity”,
and wrote up what I learned as the first part of my PhD thesis [10]. However, this
material was not published. More recently, my graduate student Anand Ramachan-
dran was able to develop some new angles on the topic in his PhD thesis [8]. We
then decided to write a joint paper [9] combining results from both our theses,
intended to be a foundation for the theory of “higher-power harmonic sections”.
Unfortunately Anand passed away before the paper was completed, so it now also
stands as a memorial to him and his work.
This talk is a brief summary of [9], together with a few results that we were unable
to fit in to that paper (Theorems , , and ). For completeness, the proofs of these

69Mathematical physicists, independently, used of one of the higher-power energies to formulate the theory of “skyrmions”.
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additional results have been included here. (There are further results from [8] con-
cerning non-unimodular 3-dimensional Lie groups that do not appear either here or
in [9], and still await publication.) The intention is to give some flavour of the topic,
without getting bogged down with too much technical detail.

2. Higher-power harmonic maps

We begin with some brief algebraic preliminaries. Suppose V is an m-dimensional
(real) vector space, and α is a linear endomorphism of V . Writing the characteristic
polynomial of α as follows:

χα(λ) = εm(α)− εm−1(α)λ+ · · ·+ (−1)m−1ε1(α)λ
m−1 + (−1)mε0(α)λ

m,

we have that:

εm(α) = det(α), . . . , ε1(α) = trace(α), ε0(α) = 1.

In general, εr(α) is the r-th elementary invariant of α; if α is diagonalisable then
εr(α) is simply the r-th elementary symmetric polynomial in the eigenvalues of α.
In general εr(α) satisfies the Newton-Girard identity:

rεr(α) = εr−1(α)trace(α)−· · ·+(−1)r−2ε1(α)trace(α
r−1)+(−1)r−1trace(αr). (1)

The r-th Newton polynomial of α (r = 0, 1, . . . ,m) is defined:

εα,r(λ) = εr(α)−εr−1(α)λ+· · ·+(−1)r−1ε1(α)λ
r−1+(−1)rλr, (2)

and the r-th Newton tensor of α is then the following linear map:

νr(α) : V → V ; νr(α) = εα,r(α).

We note that ν0(α) = I (the identity map), and νm(α) = 0 (the zero map) by the
Cayley-Hamilton theorem.

Now suppose that φ : (M, g) → (N, h) is a smooth mapping of Riemannian man-
ifolds, with dim(M) = m and dim(N) = n. We apply the above algebraic con-
structs to the first fundamental tensor α of ϕ (also known as the Cauchy-Green
tensor), defined:

g(α(X), Y ) = φ∗h(X, Y ) = h(dφ(X), dφ(Y )), (3)

for all vector fields X, Y ∈ X(M). Then:

ε1(α) = ∥dφ∥2 = 2e(φ), . . . , εm(α) = v(φ)2,

where e(φ) is the energy density of φ, and v(φ) is the volume density. In general
we have:

εr(α) = ∥(dε)r∥2 = ∥dφ ∧ · · · ∧ dφ∥2.
Relabelling the elementary invariants as εr(φ), it follows that εr(φ) : M → R is
a smooth function that at each point measures the average deformation by φ of
infinitesimal r-dimensional volume (squared). If M is compact and orientable then
the total amount of r-dimensional deformation imposed by φ is therefore:

Er(φ) =
1

2

∫
M

εr(φ)vol(g), r = 1, . . . ,m.
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We refer to this as the r-power energy, or simply r-energy, of φ. Note that Er(φ) =
0 if and only if the rank of dφ drops below r everywhere on M ; in particular, the
r-power energy is trivial if r > n.
Remark 2.1 [9, Proposition 2.5]. If m = 2r then Er(φ) depends only on the
conformal class of g.
In order to decide which mappings are optimal with respect to r-power energy
we use a variational approach, just as for the “classic” case r = 1. After ap-
plying the calculus of variations, this produces a non-linear system of second or-
der partial differential equations characterising the critical points of the functional
Er : C∞(M,N) → R (see Theorem below). It turns out that these Euler-Lagrange
equations can be written rather succinctly using the Newton tensors νr(α), which
we relabel as νr(φ) and refer to as the Newton tensors of φ. Since α is symmetric,
the Newton tensors are symmetric (1, 1)-tensors on M . We now define the r-power
tension field of φ by:

τr(φ) = trace∇(dφ ◦ νr−1(φ)).

When r = 1 we recover the standard tension field τ(φ) since ν0(φ) = I , and in all
cases τr(φ) is a section of the pullback bundle φ−1TN →M .

It is possible to split the higher-power tension fields into two pieces as follows:

τr(φ) = traceV∇dφ+dφ(divν), (4)

where for notational clarity we have abbreviated ν = νr−1(φ), and traceν denotes
the following “twisted trace”:

traceV∇dφ =
m∑
i=1

∇dφ(νEi, Ei) =
m∑
i=1

dφ(Ei, νEi), (5)

for any local orthonormal tangent frame field {Ei} in M . (The symmetry of ν
ensures that its placement is unambiguous.) Since the coefficients of ν are homo-
geneous polynomials of degree 2r − 2 in the first order partial derivatives of φ,
when expressed in local coordinates, this clarifies the non-linearity of τr(φ) as a
differential operator (without writing it out in full detail). Furthermore, if the New-
ton tensors of φ are solenoidal (ie. divν = 0) then τr(φ) simplifies dramatically.
Unfortunately (or otherwise) this is not generally the case, and situations where it
occurs are of great interest.
Theorem 2.2 [9, Theorem 2.12]. For any smooth variation φt of φ we have:

d

dt

∣∣∣
t=0

Er(φt) = −
∫
M

h
(
τr(φ),

∂φt

∂t

∣∣∣
t=0

)
vol(g).

Thus φ is a critical point of Er if and only if τr(φ) = 0.
Theorem leads to the following definition.
Definition 2.3 A smooth mapping φ : (M, g) → (N, h) is a r-power harmonic map,
or simply r-harmonic map, if τr(φ) = 0, for r = 1, . . . ,m.

A full frontal attack on the r-harmonic map equations is certainly a daunting
prospect. Instead, we look at specific geometric situations in which the equations
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become more manageable, perhaps the simplest being when either M or N is a
sphere:

Sk = {x ∈ Rk+1 : ∥x∥ = 1},
equipped with the metric (of constant sectional curvature 1) induced from ambient
Euclidean space Ek+1.
Theorem 2.4[9, Corollary 4.17]. Suppose φ : (M, g) → Sn, and φ̃ : (M, g) →
En+1 is the composition of φ with the inclusion map Sn ↪→ En+1. Then φ is a
r-harmonic map precisely when:

traceV∇2φ̃+ dφ̃(divν) = −r∥(dφ)r∥2φ̃,

where V = νr−1(φ̃) = νr−1(φ).
Remark 2.5 When r = 1 the divergence term in Theorem vanishes, and the twisted
trace reduces to the Laplace-Beltrami operator, which is linear. However this is no
longer the case when r > 1.
The most familiar example to test drive Theorem is probably the following.
Example 2.6 [9, Example 4.19]. The Hopf map φ : S3 → S2 is defined:

φ(u, v) = (2ūv, |v|2 − |u|2), (u, v) ∈ C2, |u|2 + |v|2 = 1.

Then φ is 1-harmonic and 2-harmonic with:

ε1(φ) = 8, ε2(φ) = 16, divν1(φ) = 0.

The natural generalisation of the Hopf map to higher dimensions is the Hopf fibra-
tion φ : S2n+1 → CP n, defined for all unit vectors (z1, . . . , zn+1) ∈ Cn+1 ∼= R2n+2

by:
φ(z1, . . . , zn+1) = [z1, . . . , zn+1],

where the square brackets denote homogeneous coordinates. The following result
is a special case of Theorem below.
Theorem 2.7 The Hopf fibration φ is a r-harmonic map for all r = 1, . . . , 2n, with:

εr(φ) =

(
2n

r

)
(binomial coefficient), divνr−1(φ) = 0.

Remark 2.8 The r-power energy densities in Theorem when n = 1 differ from
those of Example , since S2 is only homothetically equivalent to CP 1. Furthermore,
the fact that ε1(φ) < ε2(φ) in Example whereas ε1(φ) > ε2(φ) in Theorem shows
that the relative values of the higher-power energies can be changed by homotheties
of the codomain.
The Hopf fibration is an example of a Riemannian submersion, and the following
theorem generalises a well-known result for harmonic maps.
Theorem 2.9 Suppose φ : (M, g) → (N, h) is a Riemannian submersion. Then for
all r = 1, . . . , n we have:

εr(φ) =

(
n

r

)
,

and the following are equivalent:
i) φ is a r-harmonic map;
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ii) divνr−1(φ) = 0 and r ≥ 2;

iii) φ has minimal fibres.
Proof. As usual, we write TM = V ⊕ H where V = ker dφ and H = V⊥. We
denote by πV : TM → V and πH : TM → H the projection morphisms. From (3),
for all X, Y ∈ X(M) we have:

g(α(X), Y ) = h(dφ(X), dφ(Y )) = h(dφ ◦ πH(X), dφ ◦ πH(Y ))

= g(πH(X), πH(Y )), since φ is a Riemannian submersion
= g(πH(X), Y ).

Therefore α = πH. Since dimH = n the expression for εr(ε) as the r-th elementary
symmetric polynomial in the eigenvalues of πH is immediate. It then follows from
(2) that:

νr−1(φ) =

(
n

r − 1

)
I −

(
n

r − 2

)
πH + · · ·+ (−1)r−2

(
n

1

)
πH + (−1)r−1πH

=

(
n

r − 1

)
I −

(
n− 1

r − 2

)
πH,

by the Newton-Girard identity (1), with the understanding that the term involving
πH comes into play only if r ≥ 2.
Now choose local orthonormal frames {Hi : 1 ≤ i ≤ n} for H and {Vj : 1 ≤ j ≤
m−n} for V . Then abbreviating ν = νr−1(φ), and using the fact that ∇dφ(H,H) =
0 for a Riemannian submersion, it follows from (5) that (summing over repeated
indices):

traceV∇dφ =

(
n

r − 1

)
∇dφ(Vj, Vj) = (n−m)

(
n

r − 1

)
dφ(Hφ),

where Hφ is the mean curvature of the fibres of φ. Furthermore:

divπH = ∇πH(Hi, Hi) +∇πH(Vj, Vj)
= πV(∇HiHi)− πH(∇VjVj)
= (n−m)Hφ,

since the vertical component of ∇ : Γ(H)×Γ(H) → X(M) is skew-symmetric [7].
Hence:

divν = (m− n)

(
n− 1

r − 2

)
Hφ.

From (4) we therefore obtain:

τr(φ) = (n−m)
(( n

r − 1

)
−
(
n− 1

r − 2

))
dφ(Hφ) = (n−m)

(
n− 1

r − 1

)
dφ(Hφ).

Since Hφ is horizontal it follows that φ is r-harmonic if and only if Hφ = 0, which
also coincides with divν = 0 when r ≥ 2.
Remark 2.10 Theorem shows that for Riemannian submersions there is no signif-
icant difference between the variational behaviour of the non-trivial higher-power
energies.
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The following result is “dual” to Theorem , and exhibits similar features. The proof
is comparitively straightforward.
Theorem 2.11 Suppose φ : (M, g) → (N, h) is a Riemannian (ie. isometric) im-
mersion. Then for all r = 1, . . . ,m we have:

εr(φ) =

(
m

r

)
, divνr−1(φ) = 0,

and φ is a r-harmonic map if and only if φ is a minimal immersion.
Proof. We have α = I , hence:

V = νr−1(φ) =
(( m

r − 1

)
−
(

m

r − 2

)
+ · · ·+ (−1)r−1

)
I

=

(
m− 1

r − 1

)
I,

by the Newton-Girard identity (??). Therefore divν = 0, and:

traceV∇dφ =

(
m− 1

r − 1

)
τ(φ) = m

(
m− 1

r − 1

)
Hφ,

where Hφ is the mean curvature of φ.
Remark 2.12 Setting m = n in either of Theorems or shows that the isometries of
a Riemannian manifold are r-power harmonic maps for all r, as we would expect,
and all their Newton tensors are divergence-free.

3. Higher-power harmonic sections

In differential geometry, many mappings of interest are sections of fibre bundles,
and to treat them simply as maps ignores this extra structure. We therefore “tweak”
the ideas of Section in a couple of ways, the most obvious of which is to restrict
the calculus of variations to the submanifold of sections. However we would also
like to measure the deviation of a section from “horizontality” (given a suitable
definition of this concept), particularly in situations where no “horizontal” sections
exist. This requires tweaking the higher-power energy functionals themselves.

To be more specific, suppose initially that π : (P, k) → (M, g) is a smooth submer-
sion of Riemannian manifolds (not necessarily a Riemannian submersion, or a fibre
bundle). We use the metric of P to make the following decomposition:

TP = V⊕H, (6)

where V = ker dπ and H = V⊥. Now given a smooth section σ : M → P we
define its vertical derivative dvσ by:

dvσ(X) = πV(dσ(X)),

for all X ∈ X(M), where πV : TP → V is projection with respect to the splitting
(6). The vertical derivative is a 1-form on M with values in the pullback bundle
σ−1V → M . The vertical first fundamental tensor (or vertical Cauchy-Green ten-
sor) αv of σ is then defined:

g(αv(X), Y ) = k(dvσ(X), dvσ(Y )), (7)
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for all X, Y ∈ X(M).

We now apply the algebraic apparatus of Section , defining first the elementary
invariants of αv, which we denote by εvr(σ) : M → R for r = 1, . . . ,m. Then:

εv1(σ) = ∥dvσ∥2, . . . , εvr(σ) = ∥dvσ ∧ · · · ∧ dvσ∥2.

The first elementary invariant is familiar from the theory of harmonic sections [2]; it
vanishes identically precisely when σ is horizontal in the sense that dσ(TM) ⊂ H.
In general, εvr(σ) vanishes at points where the rank of dvσ drops below r. The
r-power vertical energy of σ is then defined:

Ev
r(σ) =

1

2

∫
M

εvr(σ)vol(g), r = 1, . . . ,m.

This functional is trivial if r exceeds the dimension of the fibres of π, which can
only happen if dim(P ) < 2 dim(M).

We also construct the Newton tensors of αv, which we denote by νvr (σ) and refer
to as the vertical Newton tensors of σ (to distinguish them from the Newton tensors
of σ as defined in Section , which are still available). These are defined for r =
0, . . . ,m, and are symmetric (1, 1)-tensors on M , with νv0 (σ) = I and νvm(σ) = 0.
The r-power vertical tension fields of σ are then defined for r = 1, . . . ,m by:

τ vr (σ) = trace∇v(dvσ ◦ ν) = traceV∇vdvσ + dvσ(divν),

where V = νvr−1(σ) and ∇v is the V-component of the Levi-Civita connection of k.
So τ vr (σ) is a section of σ−1V →M , which simplifies if νvr−1(σ) is solenoidal.
Theorem 3.1[9, Theorem 3.6]. Suppose that π has totally geodesic fibres. If σt is a
smooth variation of σ through sections of π then:

d

dt

∣∣∣
t=0

Ev
r(σt) = −

∫
M

k
(
τ vr (σ),

∂σt
∂t

∣∣∣
t=0

)
vol(g).

Theorem leads to the following definition.
Definition 3.2 A smooth section σ of a submersion with totally geodesic fibres
is a r-power harmonic section, or simply r-harmonic section, if τ vr (σ) = 0, for
r = 1, . . . ,m.
Remark 3.3 It is possible to remove the condition that π has totally geodesic fibres.
However the Euler-Lagrange equations then become more complicated, and are no
longer characterised by the vanishing of the higher-power vertical tension fields.
To demonstrate this machinery in action, we apply it first to the familiar case of a
vector bundle π : E → (M, g). Suppose, as is often the case, that π has a linear
connection ∇ and holonomy-invariant fibre metric < ∗, ∗ >; ie. π is a Riemannian
vector bundle. A Riemannian metric k on E may then be obtained from the “Kaluza-
Klein” construction (otherwise said, k is a generalised Sasaki metric), with respect
to which π has totally geodesic fibres. Then:

εvr(σ) = ∥(∇σ)r∥2 = ∥∇σ ∧ · · · ∧ ∇σ∥2.

The condition for εvr(σ) to vanish at x ∈ M is therefore that the rank of the E-
valued 1-form ∇σ on M drops below r at x. If this happens everywhere then we
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say that σ is r-parallel, generalising the familiar notion of a parallel section, which
we recover when r = 1. Thus we see very clearly what our various measurements
of “deviation from horizontality” mean in this context.

Under suitable (natural) identifications, the higher-power vertical tension fields may
be viewed as operators Tr : Γ(E) → Γ(E) defined:

Tr(σ) = traceV∇2σ+∇ divV σ, r = 1, . . . ,m, (8)

where ν = νvr−1(σ) [9, Theorem 4.7]. (Note that the second covariant derivative
∇2σ is built out of the connection in E and the Levi-Civita connection of g.) When
r = 1 this reduces to the rough Laplacian; however Tr becomes non-linear if r > 1.
Then, since π has totally geodesic fibres, σ is a r-harmonic section of E if and only
if Tr(σ) = 0.

The problematic feature of higher-power harmonic sections of vector bundles (and
a fortiori sections that are higher-power harmonic maps) is the following rigidity
theorem, already known in the “classic” case r = 1 [6].
Theorem 3.4[9, Theorem 4.5]. Suppose that σ is a section of a Riemannian vector
bundle with compact base.

(i) σ is a r-harmonic section if and only if σ is r-parallel.
(ii) σ is a r-harmonic map if and only if σ is parallel.

To sidestep the ramifications of Theorem we turn to a closely related class of bun-
dles, the associated (unit) sphere bundles S →M defined:

S = {v ∈ E :< v, v >= 1}.

We equip with the restriction of the Kaluza-Klein metric of E (which coincides
with the metric obtained from the Kaluza-Klein construction applied to S). The
following result is analogous to, and in fact generalises, the characterisation of
higher-power harmonic maps into spheres (Theorem ). It is already well-known
when r = 1 [11].
Theorem 3.5 [9, Theorem 4.13]. The r-harmonic sections σ of are characterised
by the equation:

Tr(σ) = −r∥(∇σ)r∥2σ.

To illustrate these ideas, suppose that E = TM and k is the Sasaki metric. Then
S = UM , the unit tangent bundle, and sections of S are unit vector fields on M .
For a concrete example, let M = S2n+1 and let σ be the Hopf vector field, defined
for all unit vectors z ∈ Cn+1 ∼= R2n+2 by:

σ(z) = iz,

where i =
√
−1.

Theorem 3.6 The Hopf vector field σ on S2n+1 is a r-harmonic section of the unit
tangent bundle for all r = 1, . . . , 2n, with:

εvr(σ) =

(
2n

r

)
, divνvr−1(σ) = 0.
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Proof. The natural identification of the tangent spaces of S2n+1 with their tangent
spaces is isometric and the inverse sends dvσ to ∇σ. It then follows from (7) that
αv(σ) = 0, since the integral curves of σ are geodesics. Furthermore, if {Hk : k =
1, . . . , 2n} is a local orthonormal horizontal frame field in S2n+1 (with respect to
the Hopf fibration) and H is a horizontal tangent vector then (summing over k):

αv(H) = g(αv(H), Hk)Hk + g(αv(H), σ)σ

= g
(
∇Hσ,∇Hkσ

)
Hk + g

(
∇Hσ,∇σσ

)
σ, by (7)

= g
(
∇Hσ,∇Hkσ

)
Hk,

again using the fact that σ is geodesic. Now the action of ∇σ on horizontal tangent
vectors is simply multiplication by i, which is isometric. Hence:

αv(H) = g(iH, iHk)Hk = g(H,Hk)Hk = H.

We conclude that αv is orthogonal projection onto the horizontal distribution of the
Hopf fibration.
It follows from the first part of the proof of Theorem that αv coincides with the
first fundamental tensor of the Hopf fibration. Borrowing some of the subsequent
calculations from that proof then gives us:

εvr(σ) =

(
2n

r

)
, ν(σ) =

(
2n

r − 1

)
σ, ν(H) =

(
2n− 1

r − 1

)
H,

where ν = νvr−1(σ), since ν is also the (r−1)-st Newton tensor of the Hopf fibration.
Then divν = 0 by Theorem , and from (8) the tension operators of TS2n+1 act on σ
as follows:

Tr(σ) = traceV∇2σ = ∇2VHkHkσ +∇2Vσσσ

=

(
2n− 1

r − 1

)
∇2HkHkσ +

(
2n

r − 1

)
∇2σσσ.

The second covariant derivatives can be readily evaluated since σ is a spherical
Killing field, using the following well-known curvature identity:

∇2Y Zσ = −R(σ, Y )Z = g(σ, Z)Y − g(Y, Z)σ.

Hence:

Tr(σ) = −2n

(
2n− 1

r − 1

)
σ = −r

(
2n

r

)
σ = −r εvr(σ)σ = −r∥(∇σ)r∥2σ,

and it follows from Theorem that σ is a r-power harmonic section of the unit sphere
bundle, as claimed.
Remark 3.7 The covariant derivative ∇σ of the Hopf vector field σ has rank 2n.
It therefore follows from Theorem that σ is not a r-harmonic section of the full
tangent bundle TS2n+1 for any r = 1, . . . , 2n. However σ is a (2n + 1)-harmonic
section of TS2n+1, with Ev

2n+1(σ) = 0.
Remark 3.8 The evident similarity between Theorem and Theorem shows that
the first order variational theories of higher-power energy of the Hopf fibration and
higher-power vertical energy of the Hopf vector field are essentially the same. How-
ever, there are known differences in the second order theories (ie. stability vs. insta-
bility) when r = 1 [4, 12], and it is an interesting and as yet unanswered question
whether these persist for higher powers.
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4. 3-dimensional Lie groups

So far, none of our examples have revealed any discrepancies between the various
higher-power energies of maps, or vertical higher-power energies of sections. To
find some examples where the higher-power (vertical) energies behave differently
we consider a wider class of unit vector fields, generalising Theorem when n = 1.
Let M be a 3-dimensional Lie group, which we relabel as G, equipped with a left-
invariant Riemannian metric g. The algebraic and geometric classification of all
such (G, g) was given by Milnor in [5], and we begin with a brief review.

When an orientation for G is chosen, g defines a vector cross product × on the Lie
algebra g. The Lie structure map is the linear map L : g → g characterised by:
L(a × b)=[a,b], for all α, β ∈ g.

Then L is self-adjoint if and only if G is unimodular, which henceforward for sim-
plicity we assume to be the case. So if λ1, λ2, λ3 are the eigenvalues of L, and
σ1, σ2, σ3 is a positively-oriented orthonormal eigenbasis of g, then:
[σi, σj] = λkσk,

for any even permutation (i, j, k) of (1, 2, 3). We therefore refer to the λi as the
principal structure constants of (G, g), and the σi as principal structure directions.
Their dependence on orientation means that the principal structure constants are
only determined up to sign. Furthermore if any of the λi have multiplicity then the
principal structure directions are not unique.

There are precisely six possibilities for the relative signs of the principal structure
constants (including 0), and these classify g algebraically. The six classes are:

fu(2), sl(2), e(2), e(1, 1), nil, a,

where e(2) (resp. e(1, 1)) is the Lie algebra of the isometry group of the Euclidean
(resp. Minkowskian) plane, nil is the 3-dimensional Heisenberg algebra and a is
the 3-dimensional abelian Lie algebra. The first two are simple, and the others are
solvable.

The geometry of (G, g) is facilitated by the Milnor map M : g → g defined:

M = 1
2
trace(L)I − L.

(This looks similar to the first Newton tensor of L, but for the factor 1/2.) The
principal structure directions are therefore also eigenvectors of M , and we refer to
the eigenvalues µ1, µ2, µ3 as the Milnor numbers of (G, g). They are again only
determined up to sign, and in terms of the principal structure constants are given
by:

µi =
1
2
(λj+λk−λi), {i, j, k} = {1, 2, 3}. (9)

Most remarkably, the Ricci curvature Ric of (G, g), when viewed as a (1, 1)-tensor,
is essentially the 2-nd Newton tensor of M :

Ric = 2ν2(M).

It follows that the principal structure directions are also principal Ricci directions,
and the principal Ricci curvatures ρi (ie. the eigenvalues of Ric) are:

ρi = 2µjµk, {i, j, k} = {1, 2, 3}.
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Now let σ be a left-invariant unit vector field on G, regarded as a section of the unit
tangent bundle UG→ G; ie. the unit sphere bundle of TG. We begin with a special
case.
Theorem 4.1[9, Theorems 5.12 and 5.13]. Let (G, g) be a 3-dimensional unimod-
ular Lie group with left-invariant metric. The principal structure directions are 1-
harmonic and 2-harmonic sections of UG, with:

εv1(σi) = µ 2
j + µ 2

k , εv2(σi) = µ 2
j µ

2
k , divνv1 (σi) = 0,

where {i, j, k} = {1, 2, 3}.
Remark 4.2 Both vertical energy densities are independent of orientation, as they
should be, and εv2(σi) =

1
4
ρ 2
i .

Example 4.3 Let G = SU(2). The principal structure constants for the Lie algebra
su(2) all have the same sign, which by choice of orientation may be assumed posi-
tive. The spherical metric then corresponds to the special case λ1 = λ2 = λ3 = 2.
All left-invariant unit vector fields σ are therefore principal directions, and congru-
ent to the standard Hopf field. By (9) the Milnor numbers are µ1 = µ2 = µ3 = 1.
So σ is 1-harmonic and 2-harmonic, with εv1(σ) = 2 and εv2(σ) = 1, in agreement
with Theorem .
Example 4.4[9, Example 5.3]. LetG = PSL(2,R) which we identify with the unit
tangent bundle of the hyperbolic plane:

UH2 = {(x, y, θ) : x ∈ R, y ∈ R+, θ ∈ S1}.
We endow G with the Sasaki metric g, which is left-invariant and may be expressed
as follows:

ds2 =
1

y2
(
dx2 + dy2 + (dx+ ydθ)2

)
.

Consider the left-invariant unit vector fields σ1, σ2, σ3 on G defined:

σ1 = y cos θ ∂x + y sin θ ∂y − cos θ ∂θ, σ2 = −y sin θ ∂x + y cos θ ∂y + sin θ ∂θ, σ3 = ∂θ.

Standard computational techniques for Lie brackets of vector fields yield:

[σ1, σ2] = −σ3, [σ2, σ3] = σ1, [σ3, σ1] = σ2.

Therefore the σi are principal structure directions, with:

λ1 = λ2 = 1, λ3 = −1.

Hence µ1 = µ2 = −1/2 and µ3 = 3/2 by (9). It then follows from Theorem that:

• σ3 is 1-harmonic and 2-harmonic, with:

εv1(σ3) = 1/2, εv2(σ3) = 1/16.

• For all t ∈ [0, 2π) the unit vector field σt defined:

σt = (cos t)σ1 + (sin t)σ2

= y cos(θ + t) ∂x + y sin(θ + t) ∂y − cos(θ − t) ∂θ

is 1-harmonic and 2-harmonic, with:

εv1(σt) = 5/2, εv2(σt) = 9/16.
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Remark 4.5 A comparison of the vertical energy densities in Example suggests
that σt is unstable with respect to both vertical 1-energy and 2-energy, and it is pos-
sible to show that this is indeed the case by explicity constructing an Ev

r-decreasing
variation from σt to σ3 for r = 1, 2. We also suspect that σ3 is stable, and possi-
bly an absolute minimum of both vertical energies, although this has not yet been
verified.
We now come to the general case. Notation-wise, we denote by M2 and Ric2 the
twice-iterated Milnor and Ricci tensors:

M2 =M ◦M, Ric2 = Ric ◦Ric.

Theorem 4.6[9, Theorems 5.12 and 5.13]. Let σ be a left-invariant unit vector field
on a 3-dimensional unimodular Lie group G with left-invariant metric.

i) σ is a 1-harmonic section of UG if and only if σ is an eigenvector of M2.
ii) σ is a 2-harmonic section of UG if and only if σ is an eigenvector of Ric2.

Remark 4.7 The non-unimodular case was also addressed in [8].
Since the principal structure directions are eigenvectors of both M and Ric, the
eigenspaces of M2 and Ric2 are direct sums of those of L. The admissible config-
urations are indicated in Figure 9, which shows the possible subsets (orange) of the
unit sphere of g (blue) in which higher-power harmonic left-invariant unit vector
fields can lie.
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“Generic” “Gyroscopic” “Global”

Figure 9: Admissible configurations

The “gyroscopic” and “global” configurations can occur when some or all of the
principal structure constants are distinct, and may differ according to the power of
the energy, as illustrated by the following examples.
Example 4.8 Suppose g = e(2). For this Lie algebra precisely one principal struc-
ture constant vanishes, and the other two have the same sign. An exceptional case
is when the two non-vanishing λi are equal; the corresponding metric is then flat (in
fact, these are the only flat metrics on any non-abelian 3-dimensional unimodular
Lie group). For these metrics the 1-harmonic left-invariant unit vector fields are
gyroscopic, and the 2-harmonic fields are global.
Example 4.9 Suppose g = sl(2). The principal structure constants for this Lie
algebra are all non-zero, and precisely two have the same sign, which by choice
of orientation may be assumed positive. If labelling is chosen so that λ1 ≥ λ2, λ3
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then an exceptional case is λ1 = λ2 − λ3 or λ1 = λ3 − λ2, depending on which
of λ2, λ3 is negative. (Note that this is not the exceptional case in Example , where
two principal structure constants are equal.) The left-invariant unit vector fields that
are 1-harmonic with respect to these metrics are generic, whereas the 2-harmonic
fields are gyroscopic.
Example 4.10 Suppose g = su(2). By choice of orientation and labelling it may be
assumed that λ1, λ2, λ3 > 0 with λ1 ≥ λ2, λ3. An exceptional case is λ1 = λ2+λ3,
λ2 ̸= λ3, and for these metrics the 1-harmonic left-invariant unit vector fields are
again generic, whereas the 2-harmonic fields are gyroscopic.
It’s possible, but complicated, to classify the higher-power harmonic invariant unit
vector fields for all possible left-invariant metrics on G [9, Theorem 5.16]. Instead
we conclude with a few pertinent observations.
Corollary 4.11 [9, Corollary 5.15]. Let σ be a left-invariant unit vector field on a
3-dimensional unimodular Lie group G with left-invariant metric.

i) If σ is a 1-harmonic section of UG then σ is 2-harmonic.
ii) If σ is a 2-harmonic section but not 1-harmonic then Ric(σ) = 0, which is the case precisely

when εv2(σ) = 0.
iii) The only cases where σ is 2-harmonic but not 1-harmonic are g = su(2), sl(2) or e(2) with the

metrics described in Examples 4.8–4.10.

Remark 4.12 The vertical first Newton tensor ν of a 2-harmonic left-invariant unit
vector field need not be solenoidal. For example, if G = E(2) (the Euclidean
group) then the infinitesimal translations are 1-harmonic and 2-harmonic, for all
left-invariant metrics, but ν is only solenoidal with respect to the flat metrics, which
render all left-invariant unit fields 2-harmonic (see Example 4.8).
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ABSTRACT

Ricci solitons with concircular and conformal killing potential vector fields in complex
Sasakian manifolds are investigated. In addition, it is shown that a Ricci soliton in complex
Sasakian manifolds satisfying the conditions ρ(U,X)R = 0 and ρ(V,X)R = 0 is always
expanding.

Keywords Concircular, conformal killing, complex Sasakian manifolds, Ricci solitons

1. Introduction

The Riemannian geometry of contact manifolds are studied widely at last 60 years
and could be divided into two parts: reel and complex. While there are rather than
works on the Riemannian geometry of reel contact manifolds the complex contact
manifolds are still infancy. One can think that is it possible to transfer all results
from real contact manifolds to complex unchanged. But it is not possible, so the
Riemannian geometry of complex contact manifolds should be studied indepen-
dently.
Theory of complex contact manifolds was started by Kobayashi’s paper [21] in
1959. Although this theory is older as real contact manifolds it does not inter-
ested to geometers like real contact manifolds. Further research was started again
in the early 1980s by Ishihara and Konishi [16, 17]. Ishihara and Konishi gave
Hermitian metric on complex contact manifolds and they showed that a complex
contact manifold admits always a complex almost contact structure of class C∞

[18]. Same authors presented their normality conditions for these manifolds and
they also proved that when a complex contact manifold is normal underlying man-
ifold is Kaehler. When a complex contact metric manifold is normal in this sense
it is called IK-normal. IK-normality generates some restrictions for studying nor-
mal complex contact manifolds. The one example of complex contact manifolds
odd-dimensional complex projective space is Kaehler and IK-normal. But while
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real Heisenberg group is the well-known example of normal real contact manifolds,
since complex Heisenberg group is not Kaehler, it is not IK-normal. For overcom-
ing this issue in 2000 Korkmaz gave a weaker definition for normality [23]. This
definition can be considered complex version of Sasakian manifolds [14]. On the
other hand there is no another example of normal complex contact manifolds ex-
cept for complex Heisenberg group. Many years after especially Blair, Foreman and
Korkmaz improved the Riemannian geometry of complex contact metric manifolds
[2, 3, 4, 13, 14, 23]. Also complex contact manifolds have some different results
from real case and they have good applications in optimal control of entanglements
[20].
A special case of normal complex contact metric manifolds is a complex Sasakian
manifold. Foreman gave the definition of the complex Sasakian manifold in 2000
[14]. In addition, Fetcu examined harmonic maps between complex Sasakian man-
ifolds [10] and an adapted connection on a strict complex contact manifold. [11].
We have given the definition of the complex Sasakian manifold in accordance with
the real Sasakian in [32]. We studied symmetry in complex Sasakian manifolds in
[33].

The concept of Ricci solitons was introduced by R. Hamilton [15] in the mid 1980’s.
In 1993, Iwey studied Ricci solitons on compact three- manifolds [19]. In 2006, Cao
studied geometry of Ricci solitons [9].
A Ricci soliton is a natural generalization of an Einstein metric and is defined on a
Riemannian manifold (M, g). A Ricci soliton is a triple (g,W, λ) with g a Rieman-
nian metric, W a vector field, and λ a real scalar such that

LWg + 2ρ+ 2λg = 0

where LW denotes the Lie derivative along W , ρ is the Ricci tensor. The vector
field W is called the potential field.. Obviously, a trivial Ricci soliton is an Einstein
metric with W zero or Killing. Thus, a Ricci soliton may be considered an apt gen-
eralization of an Einstein metric. The Ricci soliton is said to be shrinking, steady,
and expanding accordingly as λ is negative, zero, and positive, respectively.
Fialkow introduced in [12] the notion of concircular vector fields on a Rieman-
nian manifold. The concept of conformal Killing on a Riemannian manifold was
introduced by Tachibana in [25]. Chen and Deshmukh first introduced and classi-
fied Ricci solitons with congruent vector fields on a Riemannian manifold in 2015
[7]. He classified Ricci solitons with concircular potential field on a Riemannian
manifold [8].

2. Complex Almost Contact Metric Manifolds

The study of complex contact manifolds began with Shoshichi Kobayashi in 1959.
In [21] Kobayashi gave the following definition;
Definition 2.1 Let M be a (2n + 1)−complex dimensional complex manifold and
A = {O,O′, ...} be an open covering by coordinate neighbourhoods with following
conditions:

• There is a holomoprhic 1-form on ω each O such that ω ∧ (dω)n ̸= 0 ,
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• There is a holomoprhic function λ : O ∩O′ → C\ {0} such that ω′ = λω .

Then ω is called a complex contact form, and M is called a complex contact mani-
fold.
The complex contact structure determines a non-integrable distribution H by the
equation ω = 0. H is called a horizontal subbundle.
A complex almost contact metric structure related to complex contact form was
defined by Ishihara and Konishi in [16].
Definition 2.2 Let M be an odd complex dimensional complex manifold with al-
most complex structure J and Hermitian metric g and be covered by an open cover-
ing A = {Ui} consisting of coordinate neighborhoods. If the following conditions
satisfy then the manifold is called a complex almost contact metric manifold:

1. In each Ui there exist 1-forms u and v = u ◦ J , with dual vector fields U and V = −JU and
(1, 1) tensor fields G and H = GJ such that

H2 = G2 = −I + u⊗ U + v ⊗ V

GJ = −JG, GU = 0, g(X,GY ) = −g(GX, Y ).

2. For a and b are functions on U ∩ U ′ ̸= ∅ with a2 + b2 = 1 we have

u′ = au− bv, v′ = bu+ av,

G′ = aG− bH, H ′ = bG+ aH.

U and V vector fields determine a global vertical distribution V which is typically
assumed to be integrable.Thus from Whitney sum we have

TM = H⊕ V

and so an arbitrary vector field X on M we can write

X = X0 + u(X)U + v(X)V, X0 ∈ H.

The local tensor fields G and H are related to du and dv by

du(X, Y ) = G̃(X, Y ) + (σ ∧ v)(X, Y )

dv(X, Y ) = H̃(X, Y )− (σ ∧ u)(X, Y )

where fundamental 2−forms G̃ and H̃ are defined by G̃(X, Y ) = g(X,GY ),

H̃(X, Y ) = g(X,HY ), and σ(X) = g(∇XU, V ). σ is also called the Ishihara-
Konishi connection [16, 17].
In complex almost contact geometry, we have two normality notions. One of is
given by Ishihara and Konishi [17]. The authors defined the following two tensor

S(X, Y ) = [G,G](X, Y ) + 2g(X,GY )U − 2g(X,HY )V

+2(v(Y )HX − v(X)HY ) + σ(GY )HX

−σ(GX)HY + σ(X)GHY − σ(Y )GHX, (1)

T (X, Y ) = [H,H](X, Y )− 2g(X,GY )U + 2g(X,HY )V

+2(u(Y )GX − u(X)GY ) + σ(HX)GY

−σ(HY )GX + σ(X)GHY − σ(Y )GHX. (2)
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In here
[G,G](X, Y ) = (∇GXG)Y − (∇GYG)X −G(∇XG)Y +G(∇YG)X

is the Nijenhuis torsion of G. If S = T = 0, then a complex almost contact metric
manifold is called normal. This type of normality has known as IK-normality. On a
IK-normal complex contact metric manifold, we have ∇J = 0, that is the manifold
is Kähler.
Ishihara and Konishi introduced a concept of normality, which forced the structure
to be Kählerian and did not include some natural examples like the complex Heis-
neberg group. This led Korkmaz to define a weaker version of normality in [22],
which included these examples. The an other difference, which makes this concept
interesting, a normal complex contact metric manifold is not Kaehler.
Definition 2.3 A complex almost contact metric manifold is normal if

S(X, Y ) = T (X, Y ) = 0 for all X, Y in H, and
S (X,U) = T (X, V ) = 0 for all X .

In literature, we recall this kind of manifolds as normal complex contact metric
manifolds.
Korkmaz proved following theorem which states normality condition.
Theorem 2.4 A complex almost contact metric manifold is normal if and only if
for X, Y, Z ∈ TM

g((∇XG)Y, Z) = σ(X)g(HY,Z) + v(X)dσ(GZ,GY )

−2v(X)g(HGY,Z)− u(Y )g(X,Z)

−v(Y )g(JX,Z) + u(Z)g(X, Y ) + v(Z)g(JX, Y ), (3)

g((∇XH)Y, Z) = −σ(X)g(GY,Z)− u(X)dσ(HZ,HY )

+2u(X)g(HGY,Z) + u(Y )g(JX,Z)

−v(Y )g(X,Z) + u(Z)g(X, JY ) + v(Z)g(X, Y ). (4)

It is follow from above Theorem that;
g((∇WJ)Z, T ) = u(W )(dσ(T,GZ)− 2g(HZ, T ))

+v(W )(dσ(T,HZ) + 2g(GZ, T )).

which shows a normal complex contact metric manifold is not Kähler. In addition,
Blair and Mihai studied symmetry in complex contact geometry [4], homogeneity
and local symmetry of complex (κ, ν)-spaces [3]. In 2017, we introduced complex
η−Einstein normal complex contact metric manifolds as follow [30].
Definition 2.5 Let (M,G,H, J, U, V, u, v, g) be a normal complex contact metric
manifold and η = u − iv. If for α and β smooth functions on M the Ricci tensor
satisfies

ρ = αg + β(u⊗ u+ v ⊗ v)

then M is called a complex η−Einstein.

3. Complex Sasakian Manifolds

A special case of normal complex contact metric manifolds is a complex Sasakian
manifold. Foreman gave the definition of the complex Sasakian manifold in 2000
as follows [14].
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Definition 3.1 A normal complex contact metric manifold whose complex contact
structure is given by a global complex contact form, is called a complex Sasakian
manifold.
Also Foreman obtained following result;
Theorem 3.2 Let (M,G,H, J, U, V, u, v, g) be a normal complex contact metric
manifold. If η = u− iv is globally defined then σ = 0 [14].
We have given the definition of the complex Sasakian manifold in accordance with
the real Sasakian manifold as follows [32].
Definition 3.3 Let (M,G,H, J, U, V, u, v, g) be a normal complex contact metric
manifold. If fundamental 2- forms G̃ and H̃ is defined by

G̃ (X, Y ) = du(X, Y ) and H̃ (X, Y ) = dv (X, Y )

then M is called a complex Sasakian manifold, where X, Y are vector fields on M .
We have given the version of the theorem found in the real Sasakian manifold as
follows [32].
Theorem 3.4 Let M be a normal complex contact metric manifold. Then M is a
complex Sasakian manifold if and only if

(∇XG)Y = −2v(X)HGY − u(Y )X − v(Y )JX

+ g(X, Y )U + g(JX, Y )V (5)

(∇XH)Y = −2u(X)HGY + u(Y )JX − v(Y )X

−g(JX, Y )U + g(X, Y )V. (6)

So,we have
(∇XJ)Y = −2u(X)HY + 2v(X)GY

On a complex Sasakian manifold we get
∇XU = −GX, ∇XV = −HX. (7)

Example 3.5 A complex Heisenberg group is an example of complex Sasakian
manifolds.
We have studied on properties of Riemannian curvature tensor on complex Sasakian
manifolds in [30]. Let M be a complex Sasakian manifold. Then we have,
R (U, V )V = R (V, U)U = 0,

R(X,U)U = X + u(X)U + v(X)V,

R(X, V )V = X − u(X)U − v(X)V,

R(X,U)V = −3JX − 3u(X)V + 3v(X)U,

R(X, V )U = 0,

R(U, V )X = JX + u(X)V − v(X)U,

R(X, Y )U = v(X)JY − v(Y )JX + 2v(X)u(Y )V − 2v(Y )u(X)V

+ u(Y )X − u(X)Y − 2g(JX, Y )V,

R(X, Y )V = 3u(X)JY − 3u(Y )JX − 2u(X)v(Y )U + 2u(Y )v(X)U

+ v(Y )X − v(X)Y + 2g(JX, Y )U,

R(X,U)Y = −2v(Y )v(X)U + 2u(Y )v(X)V − g(Y,X)U + u(Y )X + g(JY,X)V,
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for X, Y ∈ Γ(TM).
On a complex Sasakian manifold M , we showed the following properties.

g(R(X,GX)GX,X) + g(R(X,HX)HX,X) + g(R(X, JX)JX,X) = −6g (X,X) ,

g(R(X,GX)Y,GY ) = g(R(X, Y )X, Y ) + g(R(X,GY )X,GY )− 2g(GX, Y )2

− 4g(HX, Y )2 − 2g(X, Y )2 + 2g(X,X)g(Y, Y )− 4g(JX, Y )2,

g(R(X,HX)Y,HY ) = g(R(X, Y )X, Y ) + g(R(X,HY )X,HY )− 2g(HX, Y )2

− 4g(GX, Y )2 − 2g(X, Y )2 + 2g(X,X)g(Y, Y )− 4g(JX, Y )2,

g(R(X,HX)JX,GX) = −g(R(X,HX)HX,X)− 4g(X,X)2,

g(R(X, JX)HX,GX) = g(R(X, JX)JX,X)− 2g(X,X)2,

g(R(GX,HX)HX,GX) = g(R(X, JX)JX,X),

g(R(GX, JX)JX,GX) = g(R(X,HX)HX,X),

g(R(JX, JY )JY, JX) = g(R(X, Y )Y,X),

g(R(X, Y )JX, JY ) = g(R(X, Y )Y,X) + 4g(X,GY )2 + 4g(X,HY )2,

g(R(Y, JX)JX, Y ) = g(R(X, JY )JY,X),

g(R(X, JY )JX, Y ) = g(R(X, JY )JY,X) + 4g(X,HY )2 + 4g(X,GY )2,

g(R(X, JX)JY, Y ) = −g(R(JX, JY )X, Y )− g(R(JY,X)JX, Y ),

By considering above results we obtain following:
Theorem 3.6 For a unit horizontal vector X on M we have

K (X,GX)+K (X,HX)+K (X, JX) = 6. (8)

Theorem 3.7 Let M be a complex Sasakian manifold and X be a unit horizontal
vector field on M . Then, the sectional curvature K is given by

K(U, V ) = 0 and K(X,U) = 1.

On complex Sasakian manifolds , we obtain following relations
ρ(U,U) = ρ(V, V ) = 4n, ρ(U, V ) = 0,

ρ(X,U) = 4nu(X), ρ (X, V ) = 4nv(X),

ρ(X, Y ) = ρ(GX,GY ) + 4n (u(X)u(Y ) + v(X)v(Y )) ,

ρ(X, Y ) = ρ(HX,HY ) + 4n (u(X)u(Y ) + v(X)v(Y )) , (9)

where X , Y are any vector fields on M .

4. Ricci Soliton

In this section we will examine Ricci solitons on a complex Sasakian manifold.
Now, consider the real characteristic vector fields U and V of a complex Sasakian
manifold.

(LUg)(Y, Z) =g(∇YU,Z) + g(∇ZU, Y )

=g(−GY,Z) + g(−GZ, Y )

=− g(GY,Z) + g(Z,GY )

=0,
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Thus, U is a killing vector field. Similarly,

(LV g)(Y, Z) =g(∇Y V, Z) + g(∇ZV, Y )

=g(−HY,Z) + g(−HZ, Y )

=− g(HY,Z) + g(Z,HY ) = 0.

Hence, V is a killing vector field.
Let X0 and Y0 be two horizontal vector fields. Hence, we have

(LUg)(X0, Y0) + 2ρ(X0, Y0) + 2λg(X0, Y0) = 0.

Since U is killing vector field we get

ρ(X0, Y0) = −λg(X0, Y0). (10)

For any vector fields X0 = X − u(X)U − v(X)V , Y0 = Y − u(X)U − v(X)V
we obtain

ρ(X, Y ) = −λg(X, Y ) + (4n+ λ)(u(X)u(Y ) + v(X)v(Y )),

τ =
4n∑
i=1

[−λg(Ei, Ei) + (4n+ λ)(u(Ei)u(Ei) + v(Ei)v(Ei))]

− λg(U,U) + (4n+ λ)(u(U)u(U) + v(U)v(U))

− λg(V, V ) + (4n+ λ)(u(V )u(V ) + v(V )v(V ))

=− 4nλ+ 8n.

Theorem 4.1 If the real characteristic vector fields of a complex Sasakian mani-
fold are U and V , then Ricci solitons (g, U, λ) and (g, V, λ) in a complex Sasakian
manifold are trivial.
Let (g,W, λ) be a Ricci soliton. If W is a conformal killing vector field then we
have

2µg + 2ρ+ 2λg = 0

ρ = −(µ+ λ)g.

From Eq. 19 we get

ρ(X, Y ) = 8ng(X, Y )− 4n(u(X)u(Y ) + v(X)v(Y )).

Hence, M is a complex η−Einstein. A. Fialkow introduced in [12] the notion of
concircular vector fields on a Riemannian manifold M as follow.
Definition 4.2 A vector ν on a Riemannian manifold M is called concircular if it
satisfies ∇Xν = γX for any vector X tangent to M , where ∇ is the Levi-Civita
connection of M , and γ is a function. A concircular vector field satisfying ∇Xν =
γX is called a nontrivial if γ is non-constant.
A vector field ν is called concurrent if γ = 1.

Definition 4.3 A Ricci soliton (g,W, λ) on a Riemannian manifold (Mn, g) is said
to have concircular (or concurrent) potential field if its potential field W is a con-
circular (or concurrent) vector field. We call the vector field W the potential field
of the Ricci soliton.
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Theorem 4.4 A Ricci soliton with concircular vector field in complex Sasakian
manifolds
i) If γ = −4n then the Ricci soliton is steady,
ii) If γ > −4n then the Ricci soliton is expanding
iii) If γ < −4n then the Ricci soliton is shrinking.
Corollary 4.5 Let M be a complex Sasakian manifold. If M is a Ricci soliton with
concurrent vector field then the Ricci soliton is shrinking with λ = −(4n+ 1).
Theorem 4.6 LetM be a complex Sasakian manifold with (g,W, λ) a Ricci soliton.
If W is a concircular vector field then M is Einstein.
The concept of conformal Killing on a Riemannian manifolds was introduced by
Tachibana in [25].
Definition 4.7 A vector field W on a Riemannian manifold is called conformal
Killing vector if the Lie derivative satisfy

LWg = µg

for a function µ.
• If µ = 0 =⇒ the vector field is a Killing vector
• If µ = 2c is constant the vector field is homothetic.

Theorem 4.8 Ricci soliton in complex Sasakian manifolds with conformal Killing
vector field

i) If µ = −8n then the Ricci soliton is steady,
ii) If µ > −8n then the Ricci soliton is expanding
iii) If µ < −8n then the Ricci soliton is shrinking.

Corollary 4.9 If a conformal Killing vector field W is the potential vector field of
the Ricci soliton in complex Sasakian manifolds then W is homothetic vector field.
Theorem 4.10 LetM be a complex Sasakian manifold and (g,W, λ) a Ricci soliton.
If W is conformal killing vector field then M is an Einstein.
Theorem 4.11 A Ricci soliton in complex Sasakian manifolds satisfying
ρ(U,X)R = 0 and ρ(V,X)R = 0 is always expanding.
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[30] Turgut Vanlı, A and Ünal, İ., On complex η-Einstein normal complex contact metric mani-
folds, Communications in Mathematics and Applications, vol. 8, no. 3, pp. 301-313, (2017).
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ABSTRACT

In this paper, studies on umbrella matrices will be discussed. Erdoğan Esin’s work with
umbrella matrices will be mentioned.

Keywords Umbrella matrix, Lie group, Infinitesimal motion, Orthogonal matrix,
Darboux matrix.

1. Introduction

This study has been prepared on umbrella matrices and consists of three sections.
In the first section Ertugrul Özdamar’s doctoral thesis named “Lie Group of Um-
brella Matrices and Differential Geometry”, who is the first person to work on
umbrella matrices in the literature will be discussed. In this section, after the defi-
nition of umbrella matrices in real and complex spaces, the Lie Group structure of
umbrella matrices and the Lie algebraic structure of the Lie group is examined.
In the second section, Nuri Kuruoğlu’s work, “On The Lie Group of Umbrella Ma-
trices”, is discussed. This section shows that the umbrella matrix group is a sub-
group of GL(n,R). Also, Double umbrella matrices and Lie group are mentioned.
In the third section, Erdoğan Esin’s doctoral dissertation titled “Motions Along a
Curve and Umbrella Matrices” was written on a problem about the kinematics of
umbrella matrices in correspondence between Hasan Hilmi Hacısalihoğlu and Oene
Bottema was examined. This review was handled by Erdogan Esin’s work “Um-
brella Matrices and Higher Curvatures of Curve”. In this section, an (nxn)-type
umbrella matrix is obtained using the curvature matrix of the curve-hypersurface
couple in the Cayley Formula, and the relationship between the Darboux matrix of
the umbrella motion and the curvature matrix is given. Then, an infinitesimal um-
brella motion is obtained using the umbrella matrix. In addition, Yusuf Yaylı’s also
contribution to umbrella matrices is in his doctoral thesis. In this thesis, quaternions
are discussed. Hamilton motions and Lie groups were analyzed. Umbrella matrices
were obtained from Hamilton’s motions with the help of the Cayley Formula.
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2. Ertuğrul Özdamar’s Contributions to The Subject

Firstly, let us start by defining the umbrella matrix.
Definition 2.1 The orthogonal matrix A ∈ O(n,C) such that AS = S is called an
umbrella matrix, where S =

[
1 1 . . . 1

]T ∈ Rn
1 and the set of umbrella matrices

A(n,C).
This definition above is of course similar for R and we may called A(n) is the set of
umbrella matrices. So we are talking about an orthogonal rotation matrix, which is
a matrix that keeps the S =

[
1 1 . . . 1

]T axis fixed and rotates everything around
this axis. We may give some situations these matrices have brought to the following
[2].
Theorem 2.2 Let A(n,C) is the set of umbrella matrices, then

• A(n,C) ⊆ O(n,C) is subgroup.
• A(n) ⊆ SO(n) is subgroup.
• A(n) and A(n,C) are the Lie group.
• The A(n) Lie group is compact and connected [2].

We can also talk about the Lie algebra of this group. The umbrella Lie group A(n)
has a Lie algebraic structure, and let us denote it by χ(A(n)). Let the lie algebra
of the O(n − 1) orthogonal group be χ(O(n − 1)). It is known that gl(n − 1,R)
is isomorphic to the space of skew-symmetric matrices χ(O(n − 1)). Ertugrul
Özdamar showed that there is a Lie algebra isomorphism between χ(O(n−1)) and
χ(A(n)).
Theorem 2.3 There is a Lie algebra isomorphism between the Lie algebras
χ(A(n)) and χ(O(n− 1)).

Therefore, A Lie algebra isomorphism can be established between gl(n−1,R) and
χ(A(n)).
Now let us consider group A(n − 1) as a subgroup in A(n). Hence, for each A ∈
A(n− 1) [

A 0
0 1

]
∈ A(n)

Moreover, for the matrix

S =

[
In−1 0
0 −1

]
we may give the σ transformation following

σ : A(n) −→ A(n)

This σ be defined as σ(A) = SAS−1. Thus, the following theorem can be men-
tioned [2].
Theorem 2.4 (A(n), A(n− 1), σ) is a symmetric space [2].
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Definition 2.5 The symmetric space (A(n), A(n − 1), σ) is called Umbrella sym-
metric space [2].
Definition 2.6 The symmetric Lie algebra that the Umbrella symmetric space de-
notes is called Umbrella symmetric Lie algebra [2].

3. Nuri Kuruoğlu’s Contributions to The Subject

Let us start by giving the umbrella matrix definition in this section in a different
way from def.().
Theorem 3.1 A matrix A ∈ GL(n,R) is Umbrella Matrix, if

AS = S

where S =
[
1 1 . . . 1

]T ∈ Rn
1 and [ ]T denotes the transpose of a matrix and

GL(n,R) is the set of all n×n, nonsingular matrices. The set of Umbrella Matrices
will be denoted by H(n) [3].
In this section, some crucial theorems can be given for H(n), which is defined as
the set of umbrella matrices.
Theorem 3.2 Let A(n) ⊆ SO(n) is the set of umbrella matrices, then

• A(n) ⊆ H(n) is subgroup.
• A(n) is Lie group of H(n) [3].

Next, we will give a definition that brings a different approach to umbrella matrices
from Nuri Kuruoğlu’s doctoral thesis.
Definition 3.3 A matrix A ∈ GL(n,R) is a Double Umbrella matrix if

AS = S

ATS = S

where S =
[
1 1 . . . 1

]T ∈ Rn
1 , [ ]T denotes the transpose of matrix andGL(n,R)

is the set of all n × n, nonsingular matrices. The set Double Umbrella matrices is
denoted by DU(n). [4]
Theorem 3.4 Let DU(n) is the set of Double Umbrella matrices, then

• A(n) ⊆ DU(n) is subgroup.
• DU(n) ⊆ H(n) is subgroup.
• DU(n) is Lie group of H(n).
• DU(n) is a Lie subgroup of GL(n,R)[3].

4. Erdoğan Esin’s Contributions to The Subject

In this part, we will discuss Erdogan Esin’s paper titled “Umbrella Matrices And
Higher Curvature Of A Curve”, which reviews his doctoral thesis. While doing this
review, we will also talk about some basic information. Firstly, let us start by giving
the curvature matrix of the curve on a hypersurface.
Let M be a hypersurface in En and α curve on M. The derivative formulas of the
natural frame field {X1, . . . , Xn} are
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DX1Xi = X
′

i = −k(i−1)gXi−1 + kigXi+1 + II(X1, Xi)Xn

DX1Xn = −II(X1, X1)X1 − II(X1, X2)X2 − . . .− II(X1, Xn−1)Xn

where 1 ≤ i ≤ n − 1 and k0g = k(n−1)g = 0. In the matrix form, these derivative
formulas become


X

′
1

X
′
2

...
X

′
n−1

X
′
n

 =


0 k1g 0 . . . 0 0 II(X1, X1)

−k1g 0 k2g . . . 0 0 II(X1, X2)
...

...
...

...
...

...
...

0 0 0 . . . −k(n−2)g 0 II(X1, Xn−1)
−II(X1, X1) . . . . . . . . . . . . −II(X1, Xn−1) 0



or simply

X
′
= K(x)X

The matrix K(x) in called the (higher) curvature matrix of the pair (α,M) [6].

We assume that the directions X2, X3, . . . , Xn−2 of the natural frame field X =
{X1, . . . , Xn} are conjugate directions with the tanget direction X1 for a curve α
which is different from the line of curvature on a hypersurface M in En. Then the
higher curvature matrix can be written in the form

K(X) =



0 k1g 0 . . . 0 0 II(X1, X1)
−k1g 0 k2g . . . 0 0 0
0 −k2g 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −k(n−2)g 0 II(X1, Xn−1)
−II(X1, X1) . . . . . . . . . . . . −II(X1, Xn−1) 0

 (1)

since

II(X1, X2) = II(X1, X3) = . . . = II(X1, Xn−2) = 0.

Let us write

kig = bi+2 (1 ≤ i ≤ n− 2)

II(X1, Xn−1) = b1

II(X1, X1) = b2.

Thus the equality (1), with respect to the elements bj (1 ≤ j ≤ n), takes the form
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K(X) =



0 b3 0 . . . 0 0 −b2
−b3 0 b4 . . . 0 0 0
0 −b4 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −bn 0 b1
b2 0 0 . . . 0 −b1 0

 (2)

Let A be any n × n orthogonal matrix one of the characteristic values of which is
not −1. Then A can always be expressed as

A = (In −B)−1(In +B) (3)

whereB is as n×n skew-symmetric matrix. The formula (3) is known as the Cayley
formula. Now taking K(X) instead of B in this formula we obtain the following
theorem [1].
Theorem 4.1 For n ≥ 3, if b1 = b2 = . . . = bn = c then the orthogonal matrix

A = (In −K(X))−1(In +K(X)) (4)

one of the charaeteristic values of which is not −1, is an umbrella matrix [1].
Next, we will give examples of surfaces formed by a (3× 3)-type curvature matrix
and an orbital curve.
Example 4.2 The curvature matrix of an α curve in 3-dimensional Euclidean space
E3 has the form

K(x) =

 0 κg −κn
−κg 0 τg
κn −τg 0


If we take κg = κn = τg = u, we get

K(x) =

 0 u −u
−u 0 u
u −u 0


and using Cayley’s formula, the orthogonal matrix

A =
1

1 + u2

 1− u2 2(u2 + u) 2(u2 − u)
2(u2 − u) 1− u2 2(u2 + u)
2(u2 + u) 2(u2 − u) 1− u2


is an umbrella matrix [1].
Let we consider A umbrella matrix with the orbit curve α(v) = (sinv, v, 0), then
we obtain the following surface

H(u, v) = (
(1− u2)sinv + (2u2 + 2u)v)

1 + 3u2
,
(2u2 − 2u)sinv + (1− u2)v)

1 + 3u2
,
(2u2 + 2u)sinv + (2u2 − 2u)v)

1 + 3u2
).

105



International Geometry Symposium in Memory of Prof. Erdogan Esin
(IGSM Erdogan Esin)

FİG. 1. H Umbrella Surface

The picture of the surface of H is rendered in Figure 1. In addition, considering the
orbital curve β(v) = (v, v3, 0), we obtain the following surface

G(u, v) = (
(1− u2)v + (2u2 + 2u)v3)

1 + 3u2
,
(2u2 − 2u)v + (1− u2)v3)

1 + 3u2
,
(2u2 + 2u)v + (2u2 − 2u)v3)

1 + 3u2
).

FİG. 2. G Umbrella Surface

The picture of the surface of H is rendered in Figure.
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Now we may give a relation between the Darboux matrix of the umbrella motion
and the higher curvature matrix by the following theorem.
Theorem 4.3 Let W (A) be the Darboux matrix of the umbrella motion, where A is
given by (4), and K(X) be the higher curvature matrix. Then

W (A) =
2c

′

c
(In −K(X))−1K(X)(In +K(X))−1

where c = c(s) [1].
We will talk about the definition of infinitesimal transformation. An infinitesimal
linear transformation is defined as a transformation whose matrix is

A = In + ε[bij]

where [bij] skew-symmetric matrix and ε denotes an infinitesimal quantity of the
first order [7]. Thus, we obtain the following theorem.
Theorem 4.4 Let W (A) be the Darboux matrix of the umbrella motion, where A is
given by (4). Then the matrix In+W (A)ds is also an infinitesimal umbrella matrix
[1].

Conclusion

As mentioned in all these studies, the kinematic applications of umbrella matrices
come to the fore. Here, some umbrella matrices were obtained from some spe-
cially selected skew-symmetric matrices with the help of Cayley’s Formula. We
will answer the question of how skew-symmetric matrices will be in such a way as
to obtain all umbrella matrices with a study in the future.
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Dear invited speakers and participants

It was actually a very melancholic symposium, I’m sorry about that. There are
many more scientists who died on the path of science I commemorate all of them
with mercy I hope that the symposium was good and useful. This symposium
was the first international symposium that I organized. If we made a mistake
unknowingly, we seek your forgiveness.

I would like to thank the invited speakers and our young friends who made
presentations. I would like to thank the symposium scientific committee and the
chairperson of the sessions. I think that the symposium was very beneficial for
our young colleagues who participated as listeners and we hope that they learned
a lot of information. Scientists who talk in symposiums must have an audience
so that what was told is useful. Thank you to everyone who participated as a listener.

I would also like to thank the organizing committee for helping me organize the
symposium.

Wishing you all a healthy and happy day.

I greet you all with my deepest feelings.

Organizing Committee Chairperson
Prof. Aysel TURGUT VANLI
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