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ABSTRACT

In this talk we present results on Roter manifolds and their generalizations.
Let g, R, S, S2, κ and C be the metric tensor, the Riemann-Christoffel curvature tensor, the Ricci
tensor and its square, the scalar curvature and the Weyl conformal curvature tensor of a semi-
Riemannian manifold (M, g), dimM = n ⩾ 4, respectively. Moreover, let (M, g) be a non-
Einstein and non-conformally flat manifold and let U be the set of all points of M at which the
tensor S is not proportional to the tensor g and C is a non-zero tensor. We will assume that U is a
non-empty set.
The tensor R (or, equivalently, the tensor C) of some 2-recurrent spaces, essentially conformally
symmetric manifolds, as well as pseudosymmetric manifolds (and in particular, pseudosymmetric
hypersurfaces in spaces of constant curvature) is a linear combination of the Kulkarni-Nomizu prod-
ucts: g ∧ g, g ∧ S and S ∧ S. Manifolds with such tensor R are called Roter manifolds or Roter
spaces. Precisely, the manifold (M, g), n ⩾ 4, is said to be a Roter manifold or a Roter space, if at
every point of U ⊂M the tensor R satisfies the equation

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g, (1)

where ϕ, µ, η are some functions on U . It is easy to check that at every point of U the tensor S2 is a
linear combination of the tensors g and S. Further, using (1) we can prove that

C =
ϕ

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

(κ)2 − trg(S
2)

2(n− 1)
g ∧ g

)
(2)

on U . Roter manifolds (M, g), n ⩾ 4, satisfy on U ⊂ M several pseudosymmetry type curvature
conditions. In particular, the (0, 6) tensors: C ·R, R · C, Q(S,C) and Q(g, C) satisfy on U

C ·R−R · C = Q(S,C)− κ

n− 1
Q(g, C). (3)

Evidently, this condition holds at all points at which the tensor C vanishes. It is also satisfied on
every semi-Riemannian Einstein manifold of dimension ⩾ 4. Thus (3) is satisfied on every Roter
manifold. We mention that (3) is an example of a generalized Einstein metric condition.
In the class of warped product manifolds M ×F Sn−2(1), with a 2-dimensional base manifold
(M, g), a warping function F and an (n−2)-dimensional standard unit sphere Sn−2(1), n ⩾ 4, and



the line element

ds2 = −h(r) dr2 + 1

h(r)
dr2 + r2 dΩ2

n−2,

where h = h(r) is a positive smooth function onM and dΩ2
n−2 is the line element of Sn−2(1), there

are also Roter spacetimes. In particular, the Reissner-Nordström, the Reissner-Nordström-de Sitter
and the Reissner-Nordström-anti-de Sitter spacetimes are Roter spacetimes.
Non-Einstein and non-conformally flat hypersurfaces M , dimM = n ⩾ 4, in an (n + 1)-
dimensional space of constant curvature having at every point of U ⊂ M exactly two distinct prin-
cipal curvatures are Roter hypersurfaces. Thus in particular, non-Einstein and non-conformally flat
Clifford hypersurfaces, of dimension ⩾ 4, are Roter hypersurfaces.
Some Roter manifolds admitting geodesic mappings.
Study on hypersurfaces in space of constant curvature with exactly three distinct principal curva-
tures, as well as on 2-quasi Einstein warped product manifolds, lead to an extension of the class of
the Roter manifolds. Let (M, g), n ⩾ 4, be a non-Einstein and non-conformally flat manifold. The
manifold (M, g) is called a generalized Roter manifold, or a generalized Roter space, if at every
point of U ⊂M the tensorR (or, equivalently, the tensor C) is a linear combination of the Kulkarni-
Nomizu products formed by the tensors: g, S, S2, . . . , Sp, where p is some natural number ≥ 2. In
particular, if p = 2 then the tensor R of a generalized Roter manifold satisfies on U

R =
ϕ3
2
S2 ∧ S2 + ϕ2 S ∧ S2 +

ϕ1
2
S ∧ S + µ2 g ∧ S2 + µ1 g ∧ S +

η1
2
g ∧ g, (4)

where ϕ1, ϕ2, ϕ3, µ1, µ2, η1 are some functions on U . Clearly, (2) is a special form of (4).
Let M ×F Ñ be the warped product manifold, with 2-dimensional base manifold (M, g), a warping
function F , and (n−2)-dimensional fiber (Ñ , g̃), n ⩾ 4, and let (Ñ , g̃) be a semi-Riemannian space,
assumed to be of constant curvature when n ⩾ 5. In the class of these warped product manifolds
M ×F Ñ there are also generalized Roter manifolds satisfying (2) which are not Roter manifolds.
Namely, certain spacetimes of the form M ×F S2(1), dimM = 2, non-Roter manifolds, satisfy (2).
For instance, in the class of general static spherically symmetric wormholes, i.e., spacetimes with
the spherically symmetric static Morris-Thorne wormhole metric

ds2 = − exp(2ψ(r)) dr2 +

(
1− b(r)

r

)−1

dr2 + r2 dΩ2
2,

where b = b(r) and ψ = ψ(r) are identified as the shape and redshift functions, respectively, there
are also generalized Roter manifolds.
Warped product manifolds M ×F Ñ , with a 2-dimensional Riemannian manifold (M, g), a warping
function F and an (n − 2)-dimensional sphere Sn−2(1), n ⩾ 4, are related to Chen ideal subman-
ifolds. Namely, some Chen ideal submanifolds M of dimension n in the Euclidean space En+m,
n ⩾ 4, m ⩾ 1, are isometric to an open submanifold of a warped product manifold M ×F Sn−2(1),
of a 2-dimensional base manifold (M, g) and the sphere Sn−2(1), where the warping function F is
a solution of some second order quasilinear elliptic partial differential equation in the plane. Condi-
tion (2) is satisfied on the set U of such submanifolds.
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Riemannian manifolds satisfying some generalized Einstein metric conditions. Int. Electron. J.
Geom. 16, 539–576 (2023). https://doi.org/10.36890/iejg.1323352
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