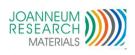
Analitik Kimya

Croatian Science Foundation under the Programme Research Projects

Optical Chemical Sensors for Multimodal Determination of Biomarkers (WearSense)

Principal Investigator (PI): Ivana Murkovic Steinberg¹

Team Members: Ernest Mestrovic¹, Zeljka Lucev Vasic², Dubravko Babic², Matija Roglić², Liljana Fruk³, Martina Lihter⁴, Gerhard J. Mohr⁵, Mathhew D. Steinberg^{6,7}, Huma Yilmaz⁷, Iva Zuvic¹


1

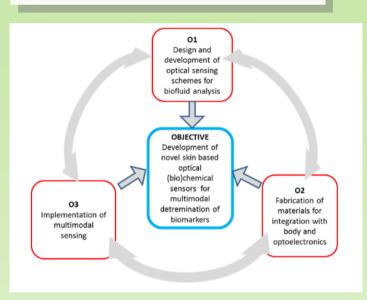
Institute of Physics, Zag

4

5

7

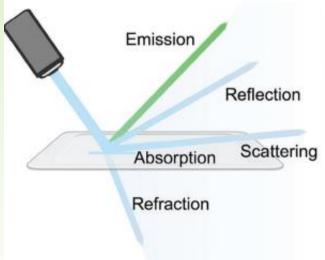
INTRODUCTION

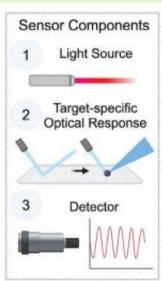

Next-generation wearable sensors that enable continuous real-time multimodal measurement of physical parameters (heart rate, heart rate variability etc.) together with biochemical markers (such as pH, concentration of electrolyte ions, metabolites, therapeutics) would be a transformative technology for personal fitness, wellbeing and diagnostics.

3

In this interdisciplinary project we intend to implement multimodal biomarker determination using a single wearable optoelectronic platform integrated with optical (bio)chemical sensing capability in the form of chemically responsive skin patches or dermal tattoos

AIM of WEARSENSE PROJECT




WearSense Project fusion methodology EPIDERMAL DERMAL

B) on-skin patchs

The most common analyte group identified in wearable electrochemical sensor research is pH and ions (20/61, 33%), with sodium ion the single most common analyte (9/61, 15%). Glucose is next (13%), followed by ethanol (7%). Toxic and pollutant gases are the most frequently sensed when it comes to ambient monitoring with wearables (20%), with SO₂, NO₂ and O₂ collectively making up the largest group (15%). Other large molecules such as proteins and hormones are clearly of interest for wearable biomonitoring, and organophosphates in ambient monitoring.

A) optically responsive thin films

C) dermal tattoos/nanoparticles

